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A survey is made of possible procedures for evaluating the basic parameters of several molecular
orbital methods previously set out in Part I. The importance of reliably evaluating the core-hamiltonian
elements is emphasised. The most satisfactory procedure is to evaluate the matrix theoretically on
a full overlap basis and then transform to a Léwdin basis for use in zero differential overlap MO
methods.

The estimation of orbital exponents for Slater-type orbitals is given particular attention. The
substantial advantage of using Burn’s rules rather than Slater’s rules is demonstrated and the VESCF
approach, suitably adapted for all-valence-electron calculations, is proposed to allow for changes
in the basis atomic orbitals caused by the intramolecular environment.

For two-electron integrals it is shown that values similar to those derived from Hartree-Fock
atomic orbitals can be obtained by using a scaling scheme applied to values obtained theoretically
using Slater type orbitals with Burns exponents.

The above scheme generates molecular Hartree-Fock matrix elements by essentially theoretical
procedures. It is proposed as potentially the most satisfactory approximate molecular orbital theory
for inorganic molecules. An alternative, semi-empirical scheme is suggested for further investigation.
It uses the same theoretical procedure for the core hamiltonian but for two electron integrals it uses
the empirical (I — A4) formula as the basis of a scaling procedure designed to allow indirectly for
electron correlation and deviation from Hartree-Fock atomic orbitals.

Two new specific forms of CNDO approximation are described, fitting the above “theoretical”
and “semi-empirical” categories. Also a particularly simple CNDO method — the CNDO-R method —
is suggested as an alternative to Extended Hiickel methods.

Ein Uberblick iiber mogliche Verfahren zur Berechnung der grundlegenden Parameter ver-
schiedener MO-Methoden aus Teil 1 wird gegeben. Die Wichtigkeit einer geeigneten Angabe der
Rumpfwechselwirkungs-Elemente wird betont. Das befriedigendste Verfahren ist, die Matrix theoretisch
mit einer vollen Uberlappungsbasis zu berechnen und dann in eine Lowdin-Basis fiir die Verwendung
in ZDO-MO-Methoden zu transformieren. Der Bestimmung der Orbital-Exponenten fiir Slater-
Orbitale wird besondere Beachtung geschenkt. Der wesentliche Vorzug der Regeln von Burns vor
den Regeln Slaters wird gezeigt. Fiir die VESCF-N#herung — angepaBt fiir Valenz-Rechnungen
unter EinschluB aller Elektronen — wird vorgeschlagen, Anderungen in den grundlegenden atomaren
Orbitalen zuzulassen, die durch die intramolekulare Umgebung verursacht werden. Fiir Zwei-
Elektronen-Integrale wird gezeigt, da Werte — dhnlich denen, die man aus Hartree-Fock-Atom-
Orbitalen erhilt — durch die Anwendung eines einfachen scaling-Verfahrens auf Werte, die mit Slater-
Orbitalen mit Burns-Exponenten berechnet wurden, erzielt werden kénnen.

Das oben genannte Verfahren erzeugt molekulare Hartree-Fock-Matrix-Eilemente durch im
wesentlichen theoretische Methoden. Es wird als die am meisten zufriedenstellende angendherte
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Molekularorbitaltheorie fiir anorganische Molekiile vorgeschlagen. Ein anderes semi-empirisches
Verfahren soll weiter untersucht werden. Es wendet dieselbe theoretische Methode fiir die Rumpf-
wechselwirkungs-Matrixelemente an, aber fiir die Zwei-Elektronen-Integrale benutzt es empirische
(I - A)-Formeln als Grundlage fiir ein scaling-Verfahren, durch das die Elektronenkorrelationen
und Abweichungen von Hartree-Fock-Atom-Orbitalen beriicksichtigt werden sollen.

Zwel neue spezifische Formen der CNDO-Naherung werden beschrieben, die in die oben ge-
nannten ,theoretischen® und ,,semiempirischen” Kategorien passen. Ebenso wird eine besonders
einfache CNDO-Methode — die CNDO-R-Methode - als Alternative zur erweiterten Hiickel-Methode
— vorgeschlagen.

Revue des différents procédés de détermination des paramétres de base pour plusieurs méthodes
d’orbitales moléculaires précédemment envisagées dans la partie I. On insiste sur I'importance d’une
évaluation convenable des éléments de I'hamiltonien de coeur. Le procédé le plus satisfaisant consiste
4 évaluer théoriquement cette matrice dans une base non orthogonale et a effectuer la transformation
en base de Lowdin utilisable dans les méthodes d’orbitales moléculaires & recouvrement différentiel
nul. La détermination des exposants dans les orbitales de Slater est considérée avec attention.
L’avantage important que présent les régles de Burns par rapport aux régles de Slater est démontré et
I’on propose d’utiliser 'approche VESCF, convenablement adaptée aux calculs avec tous les électrons
de valence, afin de tenir compte des modifications d’orbitales atomiques de base diies 4 I'environnement
intramoléculaire. En ce qui concerne les intégrales biélectroniques des valeurs semblables a celles
obtenues & partir des orbitales atomiques de Hartree-Fock peuvent étre calculées a I’aide d’un schéma
simple de réajustement appliqué aux valeurs théoriques données par les orbitales de Slater a4 exposants
de Burns. Le procédé ci-dessus engendre les éléments de la matrice Hartree-Fock moléculaire par des
voies essentiellement théoriques. On le propose comme la méthode approchée d’orbitales moléculaires
la plus satisfaisante en principe pour les molécules inorganiques. On se propose d’étudier plus avant
une autre méthode semi-empirique. Elle utilise le méme procédé théorique pour le coeur mais pour
les intégrales biélectroniques elle emploie la formule empirique (I — 4A) comme base d’un procédé
de réajustement destiné 4 rendre compte indirectement de la corrélation électronique et de ’écart &
la base des orbitales atomiques de Hartree-Fock.

Deux nouvelles formes spécifiques de I'approximation CNDO sont décrites elles résultent de
I'emploi des procédés “théorique” et “semi-empirique” ci-dessus. Une autre méthode CNDO parti-
culiérement simple — la méthode CNDO-R — est proposée comme une alternative aux méthodes de
Hiickel étendues.

1. Introduction

In Part I[1] we discussed several categories of SCFMO treatments suitable
for the study of inorganic systems. By considering several levels of approximation
and simplification of the Hartree-Fock matrix elements, several alternative
techniques present themselves for further testing as to their suitability.

In each case, having adopted some particular procedure for simplifying the
formulae for matrix elements, we must decide upon procedures for evaluating
the basic integrals that appear in these formulae. In calculations of the kind
here discussed some or all of the basic integrals are almost always regarded as
parameters that may be evaluated empirically or by judicious use of experimental
data. The literature abounds with proposed procedures in near bewildering
variety. In the present paper we survey some of the more popular empirical
techniques to try to arrive at a consistent, reliable semi-empirical scheme. We
also consider problems relating to the use of Slater-type orbitals in a method
designed to reproduce results that would be obtained with Hartree-Fock AO’s.

Calculations designed to test the methods that emerge from the analysis of
Parts I and II will be presented in Part II1.
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2. Criteria for Parameter Choice

Since our aim is to establish methods that will be suitable for a variety of
molecules we seek parameter schemes that are widely applicable, based generally
on theoretical arguments and that correct as far as possible for the known inherent
defects of the all-valence-electron molecular orbital approach. The criterion of
wide applicability has a second connotation, namely that we hope to find para-
meter schemes that can be used for the calculation of a variety of molecular
properties relating to both ground and excited electronic states. (It will probably
continue to prove convenient for UV spectral calculations to be based on ground-
state SCF molecular orbitals plus a configuration-interaction treatment of
suitable size rather than a separate SCF treatment of each electronic state).

Given this, there is still scope for fundamentally different approaches in
devising parameter schemes. In an empirical way, we could search for that set of
parameters which gives the “best” values for a series of known experimental
properties, thus using available experimental data to its maximum while regarding
the theoretical implications of our choice as secondary. This approach is well-
suited to the simpler all-valence method, the CNDO method, but becomes much
more difficult as the method becomes more complex simply because the number
of unknown parameters increases dramatically.

Therefore we attempt to develop schemes having a strong theoretical basis.
This does not, however, preclude the use of experimental data when a theoretical
justification can be made for such use. Hence two main ideas are followed:

To search for parameter schemes largely independent of experimental data,
leading to a “theoretical scheme with Hartree-Fock and electron correlation
corrections”. /

To search for parameter schemes in which experimental data are used as
much as possible, provided that a theoretical understanding has been established,
leading to “semi-empirical parameter schemes”.

As has been established in the n-electron-only MO theory for organic mole-
cules, there is scope in parameter choice for the correction of inherent deficiencies
in the method being used. The main deficiencies of the theory developed in Part I
are fairly clear. One is the inherent deficiency of the LCAOMO approximation,
that changes in the nature of the atomic orbitals upon molecule formation are
not aillowed for. The variable electronegativity SCF (VESCF) approach of Brown
and Heffernan {2, 3] is suggested as a way of partially correcting for this error.
A second is the deviation of our approximate methods from the true Hartree-
Fock solution, the deviation depending vitally upon the choice of basic atomic
orbitals. Slater-type atomic orbitals have the advantage of flexibility and ease of
calculation, and it is suggested that a suitable choice of orbital exponent coupled
with a Hartree-Fock scaling scheme for theoretical integrals partially overcomes
the Hartree-Fock deviation problem. The problem of electron correlation remains
to be considered.

It should be remembered that we are not taking advantage here of the fuil
flexibility offered by the CNDO method; for this the reader is referred to the work
of Pople, Santry and Segal, [4, 5], and of Brown and Burden [6].

Also, in our search for generality, we are not taking advantage of the possibility
of correlating parameters with ab initio calculations, as in the work of Pople,
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Santry and Segal, since such calculations are rare for molecules containing some
of the larger atoms we wish to consider. Similarly, although n-electron-only MO
theory provides a wealth of information on parameter choice, much of this work
can only be generalized to molecules containing first row atoms. Our hope on
the other hand is to provide a basis for consistent and comparative calculations
for molecules containing atoms of any row of the Periodic Table.

3. All-Valence-Electron Methods

In Part I, we distinguished between full overlap all-valence-electron methods,
that obey the secular equation:

FC=SCs (1)

and zero differential overlap methods, in which the basic atomic orbitals are
made orthogonal by Léwdin’s method [7] so that the secular equation becomes:

IFiC =7Cs. )

The Ruedenberg and Mulliken methods come under the former heading,
while the NDDO, MCZDO?! and CNDO come under the latter, and are grouped
in order of increasing approximation and hence decreasing complexity.

After the full overlap or ZDO approximations detailed in Part I have been
invoked, the integrals that have to be specifically evaluated are the kinetic energy
integrals (u| T (1) v),nuclear attraction integrals of the one-centre ({4 | Vi) vad),
two-centre ((ua| Va(1)|vy> and {ua| V(1) 4D) and three centre ({uy| Ve(1)[ /)
types, together with one centre [(u,v4lds04)] and two-centre [(1isvalAgos)]
electron repulsion integrals.

There are available theorctical means, that are quite general, for obtaining
all of these integrals, opening the way for completely non-empirical calculations
if desired. The method of evaluation depends on the type of basis atomic orbitals
chosen. For Gaussian basis atomic orbitals, the formulae set out by Harris [8]
may be used. While such a choice presents certain advantages, particularly in
the rapidity of integral evaluation, most approximate MO methods to date have

! The Fock Hamiltonian matrix F has elements composed of one-electron (H) and two-electron
(G) parts:

F,=H,+G, )
with i )
H,,=ul Ty + Y XaulVy (D], @
A .
G, =Y. Py [{uvldo)—4(uciiv)] . ©)
s

H,, is an element of the so-called “core Hamiltonian matrix”, and consists of kinetic energy
integrals (u| T(1)|v) and nuclear attraction integrals (u| VA(I [v). XA is the “core charge” on centre A,
that is, the charge remaining on A after the valence electrons have been removed. Sometimes H,,
is referred to as the “Coulomb integral”, «,, H,, (u# v) as the “resonance integral” §,, and we use
the identities:

H,=0,, 6)

Huv = ﬁuv - (7)

14*
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used Slater-type orbitals (STO’s) or Hartree-Fock atomic orbitals, the latter
having been expressed as linear combinations of appropriate STO’s by Clementi
[9]. For the present, we choose to investigate the applicability of STO’, and
employ the C-functions method of integral evaluation of Roothaan and co-
workers [ 10] as refined by Klimenko and Dyatkina [11]. The method is applicable
to quantum shells greater than n=2. Three-centre nuclear attraction integrals
present some problems here, and are found approximately as detailed in the
next section. For one-centre integrals, the tables of Zauli [12] are sometimes
convenient. Other integral evaluation methods have been reviewed by Mag-
nusson [13] and by Harris and Michels [14].

Hence a theoretical evaluation of all necessary integrals is possible. We now
need to consider whether there is any advantage in using experimental data,
and how best we can introduce refinements to the parameter choice in order to
partially correct for methodological deficiencies. To do this we first consider
various ways of calculating core Hamiltonian elements, then empirical approxi-
mations to repulsion integrals, and finally corrections to the parameter schemes
for the change of atomic orbitals with intramolecular environment, and for the
Hartree-Fock deviation.

4. The Core Hamiltonian

Already, the S-expansion technique of the previous paper has indicated the
importance to be attached to the elements of the core Hamiltonian, o, i‘VA
and B57. Results of molecular orbital calculations, described in later papers,
further confirm this conclusion and show that relatively small changes in the
basic integrals of these elements cause fairly large changes in calculated results,
and this arises because such small changes are magnified by the large core
charges arising in all-valence-clectron calculations. Therefore three different ways
of treating the core Hamiltonian have been closely examined.

4.1. Full Overlap Basis Core Hamiltonian.

In this method the core Hamiltonian elements are calculated in a full overlap
basis theoretically except that the Goeppert-Mayer-Sklar approximation (see
below) is used for the one centre part of o,. The resulting core Hamiltonian
matrix is either used directly in the full overlap (Mulliken and Ruedenberg)
methods, or is transformed to a Léwdin basis for use with the repulsion integral
approximations of the differential overlap methods, via the transformation:

‘H=S8S"*HS *. ®)

The clements of H are given by Eq. (4). The Goeppert-Mayer-Sklar approxi-
mation takes the form:

T+ X VA 22 = = LX) 12> )

where I,(X,) is an appropriate valence state ionization potential for the removal
of an electron in orbital y, in the field of the nucleus and inner shell electrons
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of atom A only. Then also,

(Al T(l) + Xa I7A(DI.”A> =—L(Xy) pluay=— SulIy(XA) - (10)
The core elements now are: '
o, =—TX)+ Y Xp<ulVa()lp, (11)
B¥*A
A= Y X ul Va)vy, (12)
B #A

AR — L[l T(D) + X\ Va2 + <l T() + X Va(1)] 4
+ X Kl VA + Xl VeI DT+ Y Xl Ve(DI 2

C#A,B

AL Sl — Sl + X ] P2 + Xy el (D) 2] (13)

+ Z Xc<.u”7c(1)u->'

C#A,B

The three-centre integrals {u, | f/c(l) | gy present some calculational problems,
and are therefore approximated using the Ruedenberg approximation in the
NDDO, MCZDO and Ruedenberg methods, or the Mulliken approximation
in the CNDO or Mulliken methods.

Then respectively either

Cial Do) Ag) =% [ZA 8, Pe(D)|v9 + Y°S,. (ol Vc(l)wJ (14)
or

St yan 4y (15)

Cual Ve Agy = =5

where V&4 and VE® are the average nuclear attraction integrals required for
rotational invariance of the Mulliken approximation.

The other integrals {u, |V (1|45 and {u,] VB(I)MB> may also be found in
either of these ways, or may be theoretically evaluated. If the Mulliken approxi-
mation is used, a particularly simple expression for 4P suitable for the Mulliken
or CNDO methods, results:

S
AB_ 1 {_ Sl — Sl + #é‘i (X VEA L X, VBB 4 X VBB 4+ X, VY

Sua

+ S [X VA XV
2 C#A,B
S
= é‘l[—lﬁ X oWt —L+ Y X ViR (16)
D#A E#B

X VA - X VBB 4 X, VBB X, V)]

S
= 2 o, ALV~ VED) + Xa(VEP — V)]
with
ty= =L+ T XV an

B#A
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and
AL (. (18)

73

The strong influence of the core charges on the magnitude of the core elements
is iilustrated in these equations.

4.2. Lowdin Basis Core Hamiltonian

In previous work (Pariser and Parr [15], Fischer-Hjalmars [16], Ohno [17]),
the expression suggested for 847 in a Léwdin basis is:
S
BiE =B S @t ay). (19)

From the S-expansion technique (Part I) it can be seen that this corresponds to
the assumption that terms $,,5,, may be neglected to the first order in overlap.
If this is the case, core elements suitable for the CNDO method may be calculated
directly in a Lowdin basis as follows (from Eq. (40)—(42) of Part I):

o, = o, + O(S?), (20)

=0, (21)
N

B = 5 LG - VRO (VR - VEN] + 0(8Y) (22)

using also Eq. (16) and (21).

Thus we obtain simple expressions, particularly easy to use in practice.
However comparative calculations on the sulphate anion described in Part III
show that the approximations made here are too drastic for quantitative results,
although the qualitative interpretations placed on these results are in agreement
with more accurate methods. The reason is that the terms in S neglected here are
substantial owing to the high core charges, and therefore o, as obtained here is
too large in magnitude while *857 is smaller than a theoretical p4? transformed
to the Lowdin basis in Sect.4.1. A more accurate alternative is provided by
Eq. (47)—(49) of Part L.

4.3. Semi-Empirical Core Hamiltonian

In the sense that empirical valence state jonization potentials are used in a,,
methods (1) and (2) are already semi-empirical. The semi-empirical core Hamil-
tonian, however, allows the resonance integral f47 to be obtained in an empirical
way, by making it proportional to the amount of overlap of the orbitals y, and x;,
and to the core charges on atoms A and B.

(Xs+ Xp) '

ﬁf = KABSM. 2

(23)
K 45 being a constant of proportionality dependent only on the atoms A and B
and not upon the particular orbitals involved, a condition necessary for rotational
invariance [4]. At this stage the spectroscopically determined B vs. R expression
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for benzene [ 18] may be used to find K 45:

_ 1Bec(Rap)
"7 S ec(Rap)

the values for the carbon-carbon quantities f.c and Sc being found at the
distance R,g, and the core charges X, being + 1.

Calculations using this semi-empirical resonance integral, when compared
with those using the theoretical method (Sect. 4.1), give the interesting result
that those resonance integrals involving p-orbitals are of roughly the same value
in the two cases, while those involving s-orbitals are quite different, the semi-
empirical values being lower. foc and Scc, having been evaluated for carbon
2p-orbitals, apparently can only be used to standardize for p-orbitals of other
atoms. Some justification for the form of equation (25), including the dependence
on the core charges, follows from a consideration of approximations for nuclear
attraction integrals presented below. It should be noted that Ruedenberg [19]
suggests that rather than equation (23), a proportionality to S(1—S) may be
more appropriate.

24)

4.4. Approximate Nuclear Attraction Integrals

Approximate means for the calculation of nuclear attraction integrals have
also been examined, and may be suitable for simplifying even further the CNDO
and Mulliken methods. Following the Pariser-Parr approach of n-electron
theory [15], these integrals may be expressed as a sum of neutral atom and electron
repulsion integral parts:

Xy V(1) = Vio(1) — Z valence py [, (1) — 3K, (1)] (25)

where Vgo(1) is the operator for the interaction of electron 1 with neutral atom B,
and the sum is over all of the valence electrons on B, with n, the occupation
number of y, in the neutral atom. Then,

X Ctal Vel pa> = Ctal Vo | ta)> — ;B n, [pul A — 3(ud] Ap)]
= s I7130 [1a> — ZA:B n, (| A4)

since (u4|Ap) is neglected in the ZDO approximation. In n-electron theory the
so-called neutral atom penetration integrals {p, | Vol s> are small (usually less
than 1eV) and are often neglected. Such an assumption gives a simple CNDO
formula;:

(26)

XB VI.;AA _ ZB, valence n,YaB
’ 27)
=— Xp7Vag-
That is
Vit = —YaB= VXB- (28)

Calculated values of neutral atom penetration integrals, however, range up to 4 eV
in the sulphur-oxygen case, and so this approximation is a poor one when high
core charges are present. Its effect on results obtained is discussed in Part IIL.
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When the point charge approximation of Pople [20] is applied, the very
simple result:
14.4

VRP=Vet=—yap=— R
AB

eV (29)

with R, in A, follows. Taking another approximation of this nature, that of
Ohno [17]:

144
XA(HAIVAMB>— 2S,ulXA R, (30)
AB

in which it is assumed that the charge distribution x4 (1) x5(1) may be represented
by a point at the midpoint of the bond, (R,3)/2, the “Ohno 7 [17] is derived
from Eq. (19):

S 2x144
Bt = —S—Z(XA“FXB)[—RT“ + VaB|- (31)
AB
Now from Eq. (29) for y,p:
14. 4
g R s R (32)
AB

giving a resonance integral formula suitable for use in the Extended Hiickel
method (to be discussed in a separate publication) and in a simplified CNDO
method, the “CNDO R-method” to be set out in Sect.§ of this paper. The
dependence on S, and (X, + Xp) provides justification for the semi-empirical
resonance integral of Eq. (25).

Calculations using the Ohno beta itself, Eq.(31), give values for spectral
transition energies that are too high, showing that the magnitude of the beta
value is too great. This conclusion is borne out by a comparison with the trans-
formed theoretical resonance integrals of Sect. 5.1. Hence we are in agreement
with- Ohno [17] and Pilar [21] who conclude that scaling of the Ohno beta is
necessary, although there is no evidence from this work that the scaling factor
is constant at (.85 as these two authors have suggested.

The arguments of this section apply to the case where not all of the valence
electrons on a particular atom are included in the calculation, if the core Hamil-
tonian elements, Eq. (6), are replaced by:

Hy = <1 T+ T X G P
+ EA, valence not included n, [(uv l O'O') __% (ua|av)]}

[

(33)

the second sum being over those valence electrons not included in the calcula-
tions. Then nuclear attraction integrals of the general type XB<yA1VBlvA> are
replaced in the formulae for « and § by:

XB<:“A| VB‘ vA> + ZB, valence not included nl(,uv | /’{A) (34)
A

The development of reliable methods for calculating the resonance integral
has been a major concern of this work. Other formulae have been examined
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and found wanting from either the point of view of generality or from the point
of view of lack of a theoretical basis. Thus the Pople-Santry-Segal formula [4],
in which the resonance integral constant K, or Eq.(23) is calibrated against
ab initio work, is not applicable to second row elements or transition metals,
where ab initio calculations are in short supply. Similarly the Fischer-Hjalmars
formula [16] falls down when experimental spectroscopic data are unavailable.
On the other hand, the Wolfsberg-Helmholtz expression [22],

Bu=K (o, 2 39

and variations of this, do not have the correct behaviour with respect to a change
in the origin of the energy scale unless K is unity [23], while satisfactory results
are obtained in most cases only when values of K greater than unity are employed.
A comparison of Eq. (35) with the theoretically derived f# of Eq. (16) shows that
important terms are missing from this Wolfsberg-Helmholtz §. Similar arguments
on theoretical grounds apply to expressions used by Dewar and Klopman [24],
to the variation of S as the inverse sixth power of the bond length [25], and to
the variation of § with bond order [26].

Evidence is presented in Part 11T to show that as well as being the most
appropriate from a theoretical viewpoint, the full overlap calculation of core
elements (Sect. 4.1) is able to give the best agreement with experimental electronic
spectra of the methods considered. The calculation of the electronic spectrum
appears as a most sensitive test of the values of these elements.

5. Empirical and Approximate Electron Repulsion Integrals

Another major issue for all-valence-electron calculations concerns the values
to be used for electron repulsion integrals. Theoretical values calculated using
Slater-type atomic orbitals are known from experience with n-electron calcula-
tions to be too large in magnitude. A common practice has therefore been to
use empirical data to obtain monocentric Coulomb repulsion integrals, while
the corresponding two-centre integrals are often found by approximate means
which relate them to the monocentric integrals. Can these methods be extended
to all-valence calculations?

We consider first of all empirical estimates of one centre repulsion integrals.
The most important formula here is that of Pariser [27], which follows a con-
sideration of the energy difference A E of the reaction:

C-+C--»Cr+C". (36)

AE may on the one hand be identified with the repulsion between the two
electrons in C:, and on the other with the difference between the ionization
potential C- - C™ and the electron affinity C-— C:.

AE = (pp|ple,=1—A. (37)

This “experimental” repulsion integral ought now to be compared with the
theoretical value for C™, as pointed out by Brown [28] and by Sinanoglu and
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Orloff {29]. If STO’s are used to find the theoretical value, then the discrepancy
between the two is mainly due to the use of STO’s rather than true Hartree-Fock
atomic orbitals, and secondly to electron correlation (Fischer-Hjalmars [16],
Sinanoglu and Orloff [29]). Thus (up|pp).,, contains Hartree-Fock and electron
correlation corrections, the work of Ref. [16] and [29] providing the theoretical
justification for its use (see however Part IV).

There are three possibilities for the use of the Pariser (I — 4) formula in
obtaining monocentric repulsion integrals:

1) Empirical monocentric repulsion integrals, found by using the (I — 4)
formula for the Coulomb repulsion integrals; empirical Slater-Condon para-
meters for the exchange repulsion integrals.

ii) Semi-empirical monocentric repulsion integrals, in which Coulomb re-
pulsion integrals are found as in (i), but used with theoretical values of exchange
repulsion integrals.

iii) Monocentric repulsion integrals, obtained by using the (I — A) formula
in conjunction with theoretical integral values — to obtain a scaling factor which
is then applied to the theoretical values of all monocentric repulsion integrals.

All monocentric repulsion integrals may be expressed theoretically as linear
combinations of the Slater-Condon parameters F and G [30], numerical values
of which can be calculated from observed atomic spectra [31, 32]. Fischer-
Hjalmars [16] has therefore suggested combining these theoretical expressions
with the experimental data to give empirical repulsion integrals. Difficulties arise
with Coulomb repulsion integrals because of complications in obtaining the
Slater-Condon parameters F, needed for their evaluation [31, 32]. However,
the parameters needed for exchange repulsion integrals have been tabulated by
Hinze and Jaffée [31] for many atoms, and the theoretical expressions for all
monocentric integrals in terms of these parameters and for real orbitals are given
in the Appendix.

The semi-empirical evaluation of repulsion integrals, (ii), has not been used
in practice in this work, but the idea that theoretical values of exchange repulsion
integrals need no correction receives support in the discussion of Hartree-Fock
integrals and electron correlation in Sect.7 and in a later paper of the series.

When the approach, (iii), is used, certain questions become important. In
particular, is the ratio of empirical to theoretical Coulomb repulsion integrals
constant for different orbitals on the same atom, and for different atoms in the
same row of the Periodic Table? Tables 1 to 4 show that this is the case when
Burns’s orbital exponents [33] are used in the theoretical calculation of the
integrals, rather than exponents calculated by the simple Slater rules [34]. Burns’s
rules for orbital exponents have been derived by a comparison of Slater-type
orbital wave functions with Hartree-Fock wave functions, and differ from Slater’s
rules in distinguishing between s- and p-orbitals in the same quantum shell, in
using only integral n-quantum numbers, and in allowing for the screening effect
of electrons in orbitals outside the one being considered. The important difference
for this work is thus, for orbitals of the same quantum shell and { the orbital
exponent:

Slater rules: {;={,,

Burns rules: {;>{, in general.
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Table 1. Coulomb repulsion integrals for first row elements. — Empirical and theoretical values (V)

Element Empirical Theoretical Burns Theoretical Slater
Pss ‘Ypp Vss ypp Vss ypp

Li 4.57 2.98 3.95 3.46 4.70 5.06
Be — 5.35 7.17 6.92 7.91 8.52
B 9.21 8.10 10.38 9.59 11.12 11.98
C 11.10 10.93 13.59 13.05 14.33 15.44
N 12.87 13.10 16.80 15.71 17.55 18.90
0O 17.63 15.27 20.02 19.17 20.76 22.36
F 13.87 17.36 23.23 22.63 23.97 25.83

Table 2. Coulomb repulsion integrals for second row elements. — Empirical and theoretical values (eV')

Element Empirical Theoretical Burns Theoretical Slater
Vss Yor Vss Vor Vss Vo

Na 4.67 2.95 5.38 3.17 433 4.70
Mg 6.15 4.46 6.91 4.44 5.85 6.35
Al 7.35 5.10 8.43 6.09 7.38 8.00
Si 10.37 6.37 9.95 1.74 8.90 9.65
P 11.72 9.31 11.47 9.01 10.42 11.30
S 8.54 10.01 12.99 10.66 11.94 12.95
Cl 9.57 11.30 14.52 12.31 13.46 14.60

Table 3. Empirical Coulomb repulsion integrals for charged species: sulphur and chlorine (eV)

Species Sulphur integral Chlorine integral

AZF 13.17 11.02 14.76
A3+ 14.42 13.69 13.09 12.38
A% 15.05 24.67 16.43 15.48
ASY 16.74 16.70

In Tables 1 and 2 empirical values of Coulomb repulsion integrals determined
from the (I — A) formula and using the neutral atom valence state ionization
potentials and electron affinities of Hinze and Jaffé [35] are compared with the
corresponding theoretical integrals calculated for the negative ion with both
Slater and Burns exponents. _

An important difference emerges from the theoretical results:

Slater 75, <7,

Burns y,> v,
relationships which would lead to different s- and p-orbital occupation numbers
in actual calculations. Allowing for experimental error in the electron affinities,
the Burns result is paralleled by the empirical integrals. In order to test this
conclusion in the case of sulphur and chlorine, where the tendency is not observed,
empirical integrals have been evaluated for charged species of these elements
from the ionization potential data of Moore’s tables [36] and the valence state
formulae of Moffitt [37]. Table 3 lists the results obtained, showing that the
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Fig. 1. Comparison of empirically evaluated (I — 4) one-centre coulomb-repulsion integrals -with
values obtained by direct integration using Slater orbitals and exponents given by Burns’s rules

Burns exponents tendency is maintained except in the case of S** and pointing
to a possible error in the neutral atom empirical data for sulphur and chlorine
in Table 2.

When the neutral atom empirical data are plotted against the theoretical
Burns integrals, a linear graph is obtained, Fig. 1, again allowing for the dis-
crepancies in the cases of F, S and Cl. Hence there is support for the argument
of using the relation:

YE=kyT (38)

where y¥ and y7 are the appropriate empirical and theoretical Coulomb repulsion
integrals while k is a constant, the scaling factor, independent of the particular
atom along any row of the Periodic Table. Further, Fig. 1 together with Table 4
shows that when Burns exponents are used, it is reasonable to make k independent
of the particular orbital, s or p, concerned, although this is not the case for Slater
exponent integrals.

The scaling factors listed in Table 4 are averages of the ratio of the empirical
to theoretical repulsion integrals taken over first row (y,, and y,,) and second
row (ys, and 73,) elements respectively. There is excellent agreement between
the separate s- and p-orbital average scaling factors in each case when Burns
exponents are used to calculate theoretical integrals. The scaling factor is inde-
pendent of orbital type for orbitals having the same quantum number. For
Slater exponents this agreement is not reached, and a separate scaling factor
for s- and p-orbitals in the one quantum shell is required.

Therefore, if y,, is the value of a particular monocentric Coulomb repulsion
integral to be used in a calculation while y., is its theoretical value calculated



MO Theory for Inorganic Molecules. II 207

Table 4. Average neutral atom repulsion integral scaling factors for first and second row atoms

Integral Scaling factor Overall average Scaling factor Overall average
Slater integrals Slater factor Burns integrals Burns factor

7 1:(H) 1.16 1.16 1.26 1.26

- el os oToe] 072

A ol

using Burns’s exponents, we have:

Vs = K (39)
where
ky=0.792 for a first row atom A,

ky=0.942 for a second row atom A.

The question of the scaling of monocentric exchange integrals is left for the
moment.

Many approximate methods for two centre Coulomb repulsion integrals have
been formulated. Nishimoto and Mataga [38] and Roos [29] base their formulae
on the conditions:

(uapalipdg) =0 at R,p=c0,
(uattalApdp) =5 [(uul pp) + (14| 24)] at Ruyz=0.

Because it is difficult to apply these and other methods such as the point charge
method of Pople [20], the uniformly charged sphere model of Parr [40], the
multipole formulation of Parr [41], and the fourth-degree polynomial in R,5 of
Fischer-Hjalmars [16] to the other two centre integrals required, (i, v, | Agop),
direct theoretical evaluation has been adopted in this work.

Nevertheless, as the case of benzene has illustrated [42], these two-centre
integrals, too, will be overestimated by theoretical means. Brown and Peel [43]
have developed a means of scaling these integrals based upon the condition (40)
for the scaling factors, and with the added condition that the shape of the theoreti-
cal repulsion integral versus bond length curve is maintained after scaling. The
formula:

(40)

A'}’ﬁf:%(L‘ yuﬂ—!—A’yll)e—kRiB (41)

where Ay=79"—7 and k is a constant (k=0.5702 A~?) evaluated so that the
expression fits the corresponding Ay values for the theoretical and spectro-
scopically determined repulsion integrals for benzene quoted in Ref. [42]. The
formula (41) has been used in this work for y, and y, the valence s-orbitals on
the corresponding atoms and the scaling factor
AB\T AB
kyp = (Vs )" — A5 42)

(s)"

has been used to scale other two-centre repulsion integrals.
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Let us now turn to the possibilities for a completely theoretical treatment
of electron repulsion integrals, examining the influence of the choice of basis
atomic orbitals on their evaluation, and asking whether a correction scheme may
be devised which corrects for the deviation of any chosen set from the basis of
true Hartree-Fock atomic orbitals.

6. Approximate Methods and the Hartree-Fock Solution

Part of the correction necessary to theoretical values of electron repulsion
integrals in past work has been attributed by some authors [16,29] to the
deviation of the Slater type atomic orbitals used from true Hartree-Fock atomic
orbitals. In particular, Orloff and Sinanoglu [29] have shown that much better
agreement is obtained between the theoretical and empirical (I — 4) Coulomb
repulsion integral for carbon pr-orbitals simply by calculating the former with
Hartree-Fock atomic orbitals. Their investigation opens the possibility of giving
a theoretical basis to the repulsion integral corrections already discussed in the
previous section.

The advantage of Slater-type atomic orbitals are the comparative ease of
computation of theoretical integrals, savings in computer time and space, and
the use of the VESCF method by means of the simple dependence of STO integrals
on effective nuclear charge Z, (see next section). Improvements to STO’s are
possible in the choice of orbital exponent and in the scaling of theoretical integrals
calculated with the chosen exponents.

Inadequacies in the simple Slater rules [30] for the calculation of orbital
exponents have been suspected for some time. A number of other ways for
calculating exponents are now available [33,44-47]. If our concern is with
obtaining approximate Hartree-Fock values for integrals, the set of rules, already
discussed, devised by Burns [33] by comparison of STO and Hartree-Fock
moment integrals appears to be most promising. The rules of Clementi and
Raimondi [46,47], determined for atomic energy minimization are similarly
promising, although more complex, and differ from the Slater’s rules in a similar
way to the Burn’s rules (see Sect. 5).

Again when theoretical monocentric Coulomb repulsion integrals for s- and
p-orbitals calculated using Slater’s and Burns’s rules are compared with Hartree-
Fock values in Table 5, the tendency discussed in Sect. 6 is observed. The vy
are greater than the y,, in the Hartree-Fock and Burns cases, while the reverse
relationship occurs for Slater exponents.

In the case of manganese, where integrals have been calculated using the
approximate Hartree-Fock atomic orbitals of Richardson, Nieuwport, Powell,
and Edgeli [48, 497, there is quite a large deviation of the Slater integral involving
d-orbitals from the Burns and Hartree-Fock values. Later calculations, especially
those in which the role of d-orbitals in molecules containing second row atoms
is investigated, show that this is an important and general deficiency in Slater
exponents themselves. Note, however the encouraging agreement between the
Burns and Hartree-Fock values.

The ratio HF/Burns values vary rather erratically, although not differing
greatly from 1.0. The charge on the oxygen atom has a considerable influence,
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Table 5. Comparison of theoretical monocentric repulsion integrals (eV)

Element Integral Slater Burns Hartree- Ratio
exponents exponents Fock AO's*® HF/Burns
o1 Vss 20.7582 20.0169 21.0381 1.0510
Vor 22.3653 19.1703 18.9100 0.9864
o° Pss 22.4881 21.7467 21.7114 0.9984
Y5 21.6176 18.7669 19.8061 1.0554
Vop 242291 21.0341 22.0007 1.0460
o*t Ves 23.4766 22.6981 0.9668
Yop 22.8979 24.9105 1.0879
Mn® Ves 5.6404 7.9266 7.3025° 0.9213
Yop 6.1403 5.3610 4.7028° 0.8772
Yed 14.0451 22.0704 19.1419% 0.8673

# Hartree-Fock atomic orbitals of Clementi, Ref. [9].
® Approximate Hartree-Fock atomic orbitals of Richardson, Nieuwpoort, Powell and Edgell
[48, 49] used, and integrals calculated by B. H. James.

Table 6. Neutral atom Hartree-Fock correction factors for monocentric integrals

Integral O S Cl Mn
Nuclear attraction {y, | I7A| Hay 1.1503 1.1992 1.2024 1.0388
Repulsion ypt 0.9984 1.0350 1.0315 0.9197

and so does the type of orbital. Closest agreement is attained for neutral oxygen.
The results for manganese show close agreement between the p-orbital and 4-
orbital ratios. In order to check this trend, a further integral y ; for neutral oxygen
was calculated, and also the fourteen unique Coulomb repulsion integrals
involving s-, p- and d-orbitals for manganese. The y,; ratio (1.055) for neutral
oxygen was in agreement with the y,, ratio, while the other manganese integrals
agreed with the y,, and y,, values listed in Table 5, giving an average ratio of
0.8854-0.02.

Two courses of action seem open to us here. Fither we may use different
scaling factors for integrals involving s-orbitals, and for integrals involving p- and
d-orbitals, or we may assume that little error is introduced by using an average
scaling factor for each atom and each pair of atoms. The latter would only be
possible if the atomic charges do not differ greatly from zero. First we investigate
the extent of scaling required for the various types of integral involved in the
calculations at various bond lengths, assuming neutral atoms. Table 6 contains
some sample results.

In most cases, the difference between the Hartree-Fock and Burns value is
very small, especially for two-centre integrals. Except in the case of manganese,
only monocentric and overlap integrals require scaling. Monocentric nuclear
attraction integrals are about 20% too low in value when Burns’s exponents are
used. This problem is avoided, however, when empirical valence state ionization
potentials are used in actual calculations. The Hartree-Fock correction for
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overlap integrals has a relatively large effect on calculated electronic spectra,
because of the consequent change in the magnitude of the resonance integrals f.
Differences in oxygen-oxygen overlap integrals increase with increasing distance
between the oxygen atoms. These differences are small in absolute terms (changing
from a Burns value of 0.0164 to a Hartree-Fock value of 0.0232 in the sulphate
anion), but, as will be shown in a later paper, cause a marked alteration in calcu-
lated transition energies.

It seems therefore that the taking of an average scaling factor introduces
little error and for a general integral I we may write:

(IAB HE __ (kAB)HF (IAB)Bums (43)

where the average Hartree-Fock correction factor (k#B)"F depends only on the
type of integral I and the atoms A and B, but not upon the orbitals x and A
involved. (k?B)F appears to differ from unity only for one centre repulsion
integrals and overlap integrals in most cases, and then a suitable average value
may be found by calculating k for the two integrals, I and I,,. Hence when
Burns’s rules for orbital exponents are used the balance between s-, p- and d-
orbitals on the one centre given by full Hartree-Fock atomic orbitals is maintained.
In addition theoretical integrals are closer to their Hartree-Fock values, and may
be scaled where necessary from the data of Tables 5 and 6. The postulate of an
average correction factor for all integrals of the same type on the same atom or
between the same pair of atoms applies, provided the atomic charge does not
differ greatly from neutrality. With their simplicity as well, the advantages of
Burns’s rules are obvious, and with the Hartree-Fock correction factors, they
seem to make a reasonable allowance for the deviation of basis STO’s from full
Hartree-Fock atomic orbitals. An alternative possibility presently under examina-
tion is the use of Gaussian basis atomic orbitals.

7. The VESCF Method and Intramolecular Environment

The Variable Electronegativity Self Consistent Field (VESCF) procedure of
Brown and Heffernan [2, 3] is particularly suitable for all valence electron
calculations, because it allows the important parameters to vary as the number
of electrons associated with each atom in the molecule changes. That is, the effect
of the intramolecular environment on the form of the basis atomic orbitals is
taken into account, but a simple alternative is sought to the laborious procedure
of optimizing orbital exponents by the variational technique?.

In principle all parameters in the calculation are made dependent upon the
effective nuclear charges Z, for orbitals y, and a simple rule is adopted for
calculating Z,,:

Z,=7""—n,—1a,, ZA n,0,, (44)

2 The basic procedure designated VE is to avoid the great labour of direct optimisation of atomic
orbitals via the variation theorem by using empirical rules devised, for example, by studies of individual
atoms and ions. For Slater type orbitals the exponent rules of Slater or Burns are regarded as crude
indications and lead to approximate expressions such as (52) for the effect of the molecular environment
on basic integrals. However, more elaborate calculations would justify the seeking of more elaborate
and reliable empirical rules.
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where the orbital y, is centred on atom A, Z***" is the effective nuclear charge of
the nucleus and inner-shell electrons for an electron in orbital y,,g,, are the
shielding constants from Burns’s or Slater’s rules, being the amount by which an
electron in orbital x, shields the electron y, from the nucleus, n, are the occupation

numbers given by

n,=P,,, Lowdin basis : (45)
n,=P,+ Y Y®P,S,, fulloverlap basis. (46)
B*A A

Because of the dependence of the n, on the bond order matrix, new values
of Z, are calculated within the SCF procedure as each new set of molecular
orbital eigenvectors is produced. Then new values of the parameters are generated
from the new values of Z, for the next iteration.

In practice the full VESCF procedure is too time-consuming for the more
complex calculations and larger molecules required here. Fortunately only the
monocentric integrals are greatly dependent on Z, within the range of Z, values
to be expected in a calculation. Consequently only these integrals are expressed
as functions of the effective nuclear charges in the version of the VESCF method
used in this work. Theoretically, the following relationships are obtained:

Cual T o> =ky 22, 47)

Gal Va0l = 15 Z, (&), 4®)

Cuakalvavay =keZ, when Z,=Z, )
= f({,,{,) otherwise,

{avalVapa> =kgZ, when Z,=Z, (50)

=q((,.{,) otherwisc.

Here n is the principal quantum number, the constants kr, k¢ and kg and the
functions f and g are available from Zauli’s tables [12], and the orbital exponents
(. , are given by: 7 :

- Zr
L==r (51)

The other monocentric parameter is the valence-state ionization potential
appearing in the Coulomb integral expression (11). In normal VESCF procedure
this is obtained as a quadraticin Z,:

L=aZl+bZ,+c (52)

where a, b and c are determined from atomic spectral data, and the formula is
to be compared with the theoretical expression from Egs. (8) and (47-50):

L= | T(1) + Ny V(1) + Timoershelisy (F (1) — 1K, (1) )

27.21 3)
= kTZi + NA 7 Zp + Zmner shells nv[fd(Zqu) _%g(Zqu)]

v
providing some justification for the form of Eq.(52) since the n, and Z, are
constant under the inner shells-valence separability conditions.

15 Theoret. chim, Acta (Berl.) Vol. 16
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The empirical constants a, b, and ¢ are determined from atomic spectroscopic
data for an isoelectronic series of ions including the reference ion A. In such
cases an extra variable, the core charge, is introduced. If a direct proportionality
of valence state ionization potential to core charge is assumed, then core charges
may be equalized along the series via a scaling procedure:

I(X,) = % IB(Xy) (54)

where I}(X,) is now the valence state ionization potential for atom B if B has the
same core charge as the reference atom A.

In all-valence-electron calculations, small deviations in Z, make large
differences to Hamiltonian elements, even more so than in the m-electron-only
calculations for which the VESCF method was originally designed. The reason
is the high core charges involved in the core Hamiltonian, which cause small
changes in the basic integrals to be magnified. Consequently the importance of
using the VESCF method is increased.

On the other hand the method is not without its disadvantages. The scaling
procedure (54) appears to need refinement and has led Julg [50] to develop a
linear variation in Z, equation for the valence state ionization potential. Also if
the Z, values vary outside a small range, two-centre integrals need to be adjusted,
a problem easily resolved in, say, the CNDO method, but much more difficult
in methods as complex as the NDDO method.

8. Special Consideration of the CNDO Method

Only an average Coulomb repulsion integral and an average nuclear attraction
integral is required for each atom A (y,, Va# respectively) and pair of atoms A
and B (y,5 and V2®) in the CNDO and Mulliken methods. Calculations show
that the way in which these averages are found has a large effect on the final
results. When theoretical values of integrals, based on Burns’s values of orbital
exponents, are considered, the original proposal of Pople, Santry, and Segal, that
integrals involving the appropriate valence shell s-orbitals are suitable averages,
is seen to be less satisfactory. Especially for the calculation of electronic spectra,
it is better to use actual weighted averages (see Part III and the examples in

Ref. [51-52]): Lo <ZA Y] >/n n (53)
ABT\ & ge Tud JJTATE

where I represents a general integral for which an average is required, the sums
are over the valence orbitals of the respective atoms included in the calculation,
and n, and ny are the numbers of such orbitals. In the “theoretical CNDO method”
all integrals I take their respective theoretical values and core elements in the
full overlap basis are formed from Eq.(16), (17), and (18). The Hartree-Fock
scaling procedure is invoked.

There are numerous possibilities for “semi-empirical CNDO methods”,
mostly depending on the choice of repulsion integrals, since on both theoretical
and practical grounds Eq. (16)—(18) represent the most reliable way of obtaining
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the core Hamiltonian matrix. Thus the (I — 4) formula supplies all the necessary
one-centre Coulomb repulsion integrals. Two-centre Coulomb repulsion integrals
may be related to the one-centre ones via the uniformly charged sphere approxi-
mation [40], or the Nishimoto-Mataga formula [38], or the Roos formula [39].
The uniformly charged sphere approximation has the advantage of being a
simple representation of the orthogonalized atomic orbitals which form the
basis of the zero differential overlap methods. According to the arguments of
Sect. 6, Hartree-Fock and electron correlation corrections to repulsion integrals
are indirectly allowed for in any of the above ways.

Finally a simple CNDO method, the “CNDO R-method”, may be suggested
as an alternative to Extended Hiickel methods. It has the advantage of being as
simple to use as these methods, promising more reliable results of a semi-quanti-
tative nature. Its name stems from the requisition of the dependence of two-
centre integrals on the bond length R. In the point charge approximation with
the neglect of neutral atom penetration integrals, Eq. (28) and (29), and using
the reduced “Ohno f” of equation (32), we have:

144

Fuu:_Iu-}_(PAA_%Puu)yA-{— 2 (PBB_XB)T: (56)
B#A AB
S 14.4 144
FAP = — k=2 (X, + Xp) —3P,,
# 2 R,p " Ryp
14.4 7)
:_%R [k(XA+XB)Suv+Puv]'
AB

Here k (0.8—0.9) is a scaling factor for the resonance integral. The only unknowns
are the one-centre repulsion integrals y,. These are easily found from the (I — A)
formula, or from the tables of Sichel and Whitehead [53] for first and second
row atoms. The “CNDO R-method” is suggested merely as a simple, easy-to-use
alternative to Extended Hiickel calculations. The information it can give would
be little more than the information obtained in Extended Hiickel work.

9, Conclusions

In our attempt to devise parameter choice schemes of general applicability
and having a sound theoretical basis, a number of important points have emerged:

a) In zero differential overlap methods, the calculation of the full-overlap-
basis core Hamiltonian matrix, followed by a transformation to the Lowdin
basis for use with zero differential overlap repulsion integral approximations is
a feasible course of action as well as having the soundest theoretical basis.

b) A “theoretical parameter scheme” is possible and practicable in a basis
of Slater-type atomic orbitals. The scheme then depends upon making adequate
Hartree-Fock and electron correlation corrections. By using Burns’s rules for
orbital exponents together with an average Hartree-Fock scaling factor for those
integrals that need further correction, the difference between STO’s and Hartree-
Fock AO’s is minimized. In a following paper of the series it will be shown how
electron correlation may be allowed for in this schemé.

¢) “Semi-empirical parameter schemes” are also possible, and depend on the
use of the (I — A) formula and Slater-Condon parameters. Via the (I — A4) formula,

15*
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an empirical scaling scheme for theoretical integrals may be developed for re-
pulsion integrals. Presumably Hartree-Fock and electron correlation corrections
are then adequately taken into account in an indirect way.

d) The VESCF approach, as well as being able to cope with the high core
charges of all valence electron calculations, allows for the effect of intra-molecular
environment on the basis atomic orbitals. It may be used in conjunction with
either “theoretical” or “semi-empirical” parameter schemes.

e) Special features of the “theoretical” and “semi-empirical” CNDO methods
have been discussed, and the simple “CNDO R-method” suggested as an alter-
native to Extended Hiickel methods for rapid calculations giving a limited amount
of information.

Appendix

Theoretical Expressions for Monocentric Repulsion Integrals in Terms of
Slater-Condon Parameters
The Slater-Condon parameters are defined and discussed in Ref. [ 12] and [30],

and in textbooks on atomic spectroscopy. Any monocentric repulsion integral in
principle may be calculated from these F and G parameters:

Juv = (/l,LL‘VV) = Z ak(lﬂ, m;l: lv’ mr) Dka(nﬂ lﬂa n lv) >
k
Kuv = (‘uV l Vﬂ) = 5(ml.:’ m:) z bk(lua m‘lla lv7 m;) Dk Gk(nu lﬂa n’ lv) .
k

The appropriate combinations of F and G parameters for integrals involving
complex orbitals are easily found from the data in Ref. [30]. Here we list the
corresponding expressions for real orbitals. The F and G parameters may be
calculated theoretically or evaluated empirically from spectroscopic data, and
in the latter case find most use for calculating monocentric exchange integrals.

Slater-Condon Parameters Expressions for Monocentric Coulomb and Exchange
Repulsion Integrals

Orbitals Involved Coulomb Repulsion Int. Exchange Repulsion Int.
U v

s s F§

s p FgP GY?

p p FRP+4FLP —

p p Fgr—2Fg» 3FpP

s d F§ G

p. d, Fg4 +4Fp° 2GM +27GE
. d,, FP 4 2 Fp¢ 3G 424 GE
j d,» Fgd -2 F%? G+ 18 G§*
P dxz_yz ng—‘l'Ffd 15 ng

d d F# + 4AF$* + 36 F —

d,, dy2_ 2 F3 4 AF4? 34 FH 35F%

d,» d, Fid 4 2F# _24F# F3% + 30 F§¢
d., d, Fl# _2F#— 4F§ 3F 4+ 20F
d,. dy, Fid _4AFd# 4 @i 4FH 415 pdd
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Relationships that hold for integrals not listed here are:
(a) Involving p- and d-orbitals.
(1) J(pz’ dxz) = J(pz7 dyz) = J(px’ dxz) = J(px’ dxy)
= '](py’ dyz) = J(pyzdxy) = J(px’ dxz—yz) = J(py’ dxz—yz)
(i) J (.o d.2) =T, d2)
(111) J(pz5 dxz—yz) = J(pz:r dxy) = J(px7 dyz) = J(pyv dxz)
(iv) Similarly for the exchange integrals, K.
(b) Involving d-orbitals only.
(I) J(dz2’ dxz) = J(dzz9 dyz)
(11) J(dxz’ dyz) = J(dxz’ dxy) = J(dxzs dxz—_vz) = J(dyz> dxy) = J(d
(iii) J(d,2,d,)=J(d,2, dy2 2)
(iv) Similarly for the exchange integrals K.
These formulas are useful :

(i) in deriving theoretical expressions for all of the integrals in terms of their
orbital exponents. Only a limited number of F and G parameters need be derived
theoretically to obtain the wide range of repulsion integrals listed here;

(i) in obtaining empirical exchange and, in some cases, Coulomb-repulsion
integrals;

(iii) in deriving simple relationships between the integrals involving different
orbitals of the same set, which can then act as a test of values of integrals being
used, especially where these have been found semi-empirically.

i)

yz?
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