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A survey is made of possible procedures for evaluating the basic parameters of several molecular 
orbital methods previously set out in Part I. The importance of reliably evaluating the core-hamiltonian 
elements is emphasised. The most satisfactory procedure is to evaluate the matrix theoretically on 
a full overlap basis and then transform to a LSwdin basis for use in zero differential overlap MO 
methods. 

The estimation of orbital exponents for Slater-type orbitals is given particular attention. The 
substantial advantage of using Burn's rules rather than Slater's rules is demonstrated and the VESCF 
approach, suitably adapted for all-valence-electron calculations, is proposed to allow for changes 
in the basis atomic orbitals caused by the intramolecular environment. 

For two-electron integrals it is shown that values similar to those derived from Hartree-Fock 
atomic orbitals can be obtained by using a scaling scheme applied to values obtained theoretically 
using Slater type orbitals with Burns exponents. 

The above scheme generates molecular Hartree-Fock matrix elements by essentially theoretical 
procedures, It is proposed as potentially the most satisfactory approximate molecular orbital theory 
for inorganic molecules. An alternative, semi-empirical scheme is suggested for further investigation. 
It uses the same theoretical procedure for the core hamiltonian but for two electron integrals it uses 
the empirical (I - A) formula as the basis of a scaling procedure designed to allow indirectly for 
electron correlation and deviation from Hartree-Fock atomic orbitals. 

Two new specific forms of CNDO approximation are described, fitting the above "theoretical" 
and "semi-empiricar' categories. Also a particularly simple CNDO method - the CNDO-R method - 
is suggested as an alternative to Extended Hiickel methods. 

Ein Uberblick fiber mbgliche Verfahren zur Berechnung der grundlegenden Parameter ver- 
schiedener MO-Methoden aus Teil I wird gegeben. Die Wichtigkeit einer geeigneten Angabe der 
Rumpfwechselwirkungs-Elemente wird betont. Das befriedigendste Verfahren ist, die Matrix theoretisch 
mit einer vollen ~berlappungsbasis zu berechnen und dann in eine LSwdin-Basis fOr die Verwendung 
in ZDO-MO-Methoden zu transformieren. Der Bestimmung der Orbital-Exponenten for Slater- 
Orbitale wird besondere Beachtung geschenkt. Der wesentliche Vorzug der Regeln von Burns vor 
den Regeln Slaters wird gezeigt. FOr die VESCF-Niiherung - angepaBt fOr Valenz-Rechnungen 
unter EinschluB aller Elektronen - wird vorgeschlagen, ,~nderungen in den grundlegenden atomaren 
Orbitalen zuzulassen, die dutch die intramolekulare Umgebung verursacht werden. Ffir Zwei- 
Elektronen-Integrale wird gezeigt, dab Werte - ~ihnlich denen, die man aus Hartree-Fock-Atom- 
Orbitalen erh~ilt - durch die Anwendung eines einfachen scaling-Verfahrens auf Werte, die mit Slater- 
Orbitalen mit Burns-Exponenten berechnet wurden, erzielt werden kbnnen. 

Das oben genannte Verfahren erzeugt molekulare Hartree-Fock-Matrix-Elemente durch im 
wesentlichen theoretische Methoden. Es wird als die am meisten zufriedenstellende angen~iherte 
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Molekularorbitaltheorie f'tir anorganische Molekiile vorgeschlagen. Ein anderes semi-empirisches 
Verfahren soll weiter untersucht werden. Es wendet dieselbe theoretische Methode ffir die Rumpf- 
wechselwirkungs-Matrixelemente an, aber fitr die Zwei-Elektronen-Integrale benutzt es empirische 
( I -  A)-Formeln als Grundlage ftir ein scaling-Verfahren, durch das die Elektronenkorrelationen 
und Abweichungen yon Hartree-Fock-Atom-Orbitalen berticksichtigt werden sollen. 

Zwei neue spezifische Formen der CNDO-N~iherung werden beschrieben, die in die oben ge- 
nannten ,,theoretischen" und ,,semiempirischen" Kategorien passen. Ebenso wird eine besonders 
einfache CNDO-Methode - die CNDO-R-Methode - als Alternative zur crweiterten Htickel-Methode 
- vorgeschlagen. 

Revue des diff6rents proc6d6s de d6termination des param6tres de base pour plusieurs m6thodes 
d'orbitales mol6culaires pr6c6demment envisag6es dans la partie I. On insiste sur l'importance d'une 
6valuation convenable des ~16ments de l'hamiltonien de coeur. Le proc6d~ le plus satisfaisant consiste 
/~ 6valuer th6oriquement cette matrice dans une base non orthogonale et/t effectuer la transformation 
en base de LSwdin utilisable dans les m6thodes d'orbitales mol6culaires fi recouvrement diff6rentiel 
nul. La d6termination des exposants dans les orbitales de Slater est consid~r6e avec attention. 
L'avantage important que pr6sent les r6gles de Burns par rapport aux r6gles de Slater est d6montr6 et 
l'on propose d'utiliser l'approche VESCF, convenablement adapt6e aux calculs avec tousles 61ectrons 
de valence, afin de tenir compte des modifications d'orbitales atomiques de base dries/t l'environnement 
intramol6culaire. En ce qui concerne les int6grales bi61ectroniques des valeurs semblables ~ celles 
obtenues fi partir des orbitales atomiques de Hartree-Fock peuvent ~tre calcul6es fi l'aide d'un sch6ma 
simple de r6ajnstement appliqu6 aux valeurs th6oriques donn6es par les orbitales de Slater/~ exposants 
de Burns. Le proc6d6 ci-dessus engendre les ~l~ments de la matrice Hartree-Fock mol6culaire par des 
voles essentiellement th~oriques. On le propose comme la m~thode approch6e d'orbitales mol6culaires 
la plus satisfaisante en principe pour les mol6cules inorganiques. On se propose d'6tudier plus avant 
une autre m6thode semi-empirique. Elle utilise le marne proc6d6 th6orique pour le coeur mais pour 
les int6grales bi61ectroniques elle emploie la formule empirique ( I -  A) comme base d'un proc6d6 
de r6ajustement destin6 A rendre compte indirectement de la corr61ation 61ectronique et de l'6cart/i 
la base des orbitales atomiques de Hartree-Fock. 

Deux nouvelles formes sp~cifiques de l'approximation CNDO sont d6crites elles r6sultent de 
l'emploi des proc~d6s "th6orique" et "semi-empirique" ci-dessus. Une autre m6thode CNDO parti- 
culi~rement simple - la m6thode CNDO-R - est propos6e comme une alternative aux m6thodes de 
Hfickel 6tendues. 

1.  I n t r o d u c t i o n  

In  Pa r t  I [-1] we discussed several  ca tegor ies  of S C F M O  t r e a t m e n t s  su i t ab le  
for the s t udy  of i n o r g a n i c  systems. By co n s i d e r i ng  several  levels of a p p r o x i m a t i o n  
a n d  s impl i f i ca t ion  of the  H a r t r e e - F o c k  m a t r i x  e lements ,  several  a l t e rna t ive  
t echn iques  p resen t  themselves  for fur ther  tes t ing as to their  sui tabi l i ty .  

In  each case, h a v i n g  a d o p t e d  some  pa r t i cu l a r  p r o c e d u r e  for s impl i fy ing  the 
fo rmu lae  for m a t r i x  e lements ,  we m u s t  decide u p o n  p rocedures  for e v a l u a t i n g  
the bas ic  in tegra l s  tha t  a p p e a r  in  these formulae .  In  ca lcu la t ions  of the k i n d  
here d iscussed  some  or  all  of  the bas ic  in tegra l s  are a lmos t  a lways rega rded  as 
p a r a m e t e r s  tha t  m a y  be e v a l u a t ed  empi r i ca l ly  or by  j u d i c i o u s  use of expe r imen ta l  
data.  The  l i t e ra tu re  a b o u n d s  wi th  p r o p o s e d  p rocedures  in  n e a r  bewi lde r ing  
variety.  In  the  p resen t  p a p e r  we survey  some  of the  m o r e  p o p u l a r  empi r i ca l  
t e chn iques  to t ry to ar r ive  at  a cons is ten t ,  re l iable  semi -empi r i ca l  scheme.  W e  
also cons ide r  p r o b l e m s  re la t ing  to the use of S la te r - type  orb i ta l s  in a m e t h o d  
des igned  to r e p r o d u c e  resul ts  tha t  w o u l d  be o b t a i n e d  wi th  H a r t r e e - F o c k  AO's .  

C a l c u l a t i o n s  des igned  to test the m e t h o d s  tha t  emerge  f rom the  analys is  of 
Pa r t s  I a n d  I I  will be  p re sen t ed  in  P a r t  III .  
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2. Criteria for Parameter Choice 
Since our aim is to establish methods that will be suitable for a variety of 

molecules we seek parameter schemes that are widely applicable, based generally 
on theoretical arguments and that correct as far as possible for the known inherent 
defects of the all-valence-electron molecular orbital approach. The criterion of 
wide applicability has a second connotation, namely that we hope to find para- 
meter schemes that can be used for the calculation of a variety of molecular 
properties relating to both ground and excited electronic states. (It will probably 
continue to prove convenient forUV spectral calculations to be based on ground- 
state SCF molecular orbitals plus a configuration-interaction treatment of 
suitable size rather than a separate SCF treatment of each electronic state). 

Given this, there is still scope for fundamentally different approaches in 
devising parameter schemes. In an empirical way, we could search for that set of 
parameters which gives the "best" values for a series of known experimental 
properties, thus using available experimental data to its maximum while regarding 
the theoretical implications of our choice as secondary. This approach is well- 
suited to the simpler all-valence method, the CNDO method, but becomes much 
more difficult as the method becomes more complex simply because the number 
of unknown parameters increases dramatically. 

Therefore we attempt to develop schemes having a strong theoretical basis. 
This does not, however, preclude the use of experimental data when a theoretical 
justification can be made for such use. Hence two main ideas are followed: 

To search for parameter schemes largely independent of experimental data, 
leading to a "theoretical scheme with Hartree-Fock and electron correlation 
corrections". 

To search for parameter schemes in which experimental data are used as 
much as possible, provided that a theoretical understanding has been established, 
leading to "semi-empirical parameter schemes". 

As has been established in the K-electron-only MO theory for organic mole- 
cules, there is scope in parameter choice for the correction of inherent deficiencies 
in the method being used. The main deficiencies of the theory developed in Part I 
are fairly clear. One is the inherent deficiency of the LCAOMO approximation, 
that changes in the nature of the atomic orbitals upon molecule formation are 
not allowed for. The variable electronegativity SCF (VESCF) approach of Brown 
and Heffernan [-2, 3] is suggested as a way of partially correcting for this error. 
A second is the deviation of our approximate methods from the true Hartree- 
Fock solution, the deviation depending vitally upon the choice of basic atomic 
orbitals. Slater-type atomic orbitals have the advantage of flexibility and ease of 
calculation, and it is suggested that a suitable choice of orbital exponent coupled 
with a Hartree-Fock scaling scheme for theoretical integrals partially overcomes 
the Hartree-Fock deviation problem. The problem of electron correlation remains 
to be considered. 

It should be remembered that we are not taking advantage here of the full 
flexibility offered by the CNDO method; for this the reader is referred to the work 
of Pople, Santry and Segal, [4, 5], and of Brown and Burden [6]. 

Also, in our search for generality, we are not taking advantage of the possibility 
of correlating parameters with ab initio calculations, as in the work of Pople, 
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Santry and Segal, since such calculations are rare for molecules containing some 
of the larger atoms we wish to consider. Similarly, although re-electron-only MO 
theory provides a wealth of information on parameter choice, much of this work 
can only be generalized to molecules containing first row atoms. Our hope on 
the other hand is to provide a basis for consistent and comparative calculations 
for molecules containing atoms of any row of the Periodic Table. 

3. All-Valence-Electron Methods 

In Part I, we distinguished between full overlap all-valence-electron methods, 
that obey the secular equation: 

F C = S C e  (1) 

and zero differential overlap methods, in which the basic atomic orbitals are 
made orthogonal by L6wdin's method [7] so that the secular equation becomes: 

~F~C = ~C~. (2) 

The Ruedenberg and Mulliken methods come under the former heading, 
while the NDDO,  MCZDO t and CNDO come under the latter, and are grouped 
in order of increasing approximation and hence decreasing complexity. 

After the full overlap or ZDO approximations detailed in Part I have been 
invoked, the integrals that have to be specifically evaluated are the kinetic energy 
integrals <# [ T(1)Iv), nuclear attraction integrals of the one-centre (<#AI I?A(1) [ VA>), 
two-centre (<#AI VB(1)[ VA> and @A] VB(I) I2B>) and three centre (</t A[ I?c(l)[2s> ) 
types, together with one centre [(/~AVAf2AaA)] and two,centre [(#AVAI2BO'B)] 
electron repulsion integrals. 

There are available theoretical means, that are quite general, for obtaining 
all of these integrals, opening the way for completely non-empirical calculations 
if desired. The method of evaluation depends on the type of basis atomic orbitals 
chosen. For  Gaussian basis atomic orbitals, the formulae set out by Harris [8] 
may be used. While such a choice presents certain advantages, particularly in 
the rapidity of integral evaluation, most approximate MO methods to date have 

The Fock Hamiltonian matrix F has elements composed of one-electron (H) and two-electron 
(G) parts: 

F,~= H.~ + G~ (3) 
with 

H~,~= (,ul 7"(1)Jr) + ~ XA(,u[ VA (1)iv), (4) 
A 

G,v = F, e~ [(,. +l,~)- ~(~l~v)]. (5) 

H,v is an element of the so-called "core Hamiltonian matrix", and consists of kinetic energy 
integrals (~ [ T(1)4 v) and nuclear attraction integrals (/z [ I?A(1 ) [ V). XA is the "core charge" on centre A, 
that is, the charge remaining on A after the valence electrons have been removed. Sometimes Huu 
is referred to as the "Coulomb integral", %, Hu~ (/~ r v) as the "resonance integral" flu~ and we use 
the identities: 

H.~, ~ %, (6) 

n.~ ----- flu~. (7) 
14" 
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used Slater-type orbitals (STO's) or Hartree-Fock atomic orbitals, the latter 
having been expressed as linear combinations of appropriate STO's by Clementi 
[9]. For the present, we choose to investigate the applicability of STO's, and 
employ the C-functions method of integral evaluation of Roothaan and co- 
workers [10] as refined by Klimenko and Dyatkina [11]. The method is applicable 
to quantum shells greater than n = 2. Three-centre nuclear attraction integrals 
present some problems here, and are found approximately as detailed in the 
next section. For one-centre integrals, the tables of Zauli [12] are sometimes 
convenient. Other integral evaluation methods have been reviewed by Mag- 
nusson [13] and by Harris and Michels [14]. 

Hence a theoretical evaluation of all necessary integrals is possible. We now 
need to consider whether there is any advantage in using experimental data, 
and how best we can introduce refinements to the parameter choice in order to 
partially correct for methodological deficiencies. To do this we first consider 
various ways of calculating core Hamiltonian elements, then empirical approxi- 
mations to repulsion integrals, and finally corrections to the parameter schemes 
for the change of atomic orbitals with intramolecular environment, and for the 
Hartree-Fock deviation. 

4. The Core Hamiltonian 

Already, the S-expansion technique of the previous paper has indicated the 
importance to be attached to the elements of the core Hamiltonian, %, flAA 
and AR fl,Z. Results of molecular orbital calculations, described in later papers, 
further confirm this conclusion and show that relatively small changes in the 
basic integrals of these elements cause fairly large changes in calculated results, 
and this arises because such small changes are magnified by the large core 
charges arising in all-valence-electron calculations. Therefore three different ways 
of treating the core Hamiltonian have been closely examined. 

4.1. Full Overlap Basis Core Hamiltonian. 

In this method the core Hamiltonian elements are calculated in a full overlap 
basis theoretically except that the Goeppert-Mayer-Sklar approximation (see 
below) is used for the one centre part of ~,. The resulting core Hamiltonian 
matrix is either used directly in the full overlap (Mulliken and Ruedenberg) 
methods, or is transformed to a LSwdin basis for use with the repulsion integral 
approximations of the differential overlap methods, via the transformation: 

~ H  = S - ~  H S  - §  . (8) 

The elements of H are given by Eq. (4). The Goeppert-Mayer-Sklar approxi- 
mation takes the form: 

3(1) + XAI~A(1) I Z~} = -- I,(XA) I X~} (9) 

where I.(XA) is an appropriate valence state ionization potential for the removal 
of an electron in orbital )~. in the field of the nucleus and inner shell electrons 
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of atom A only. Then also, 

<2hi ~'(1) + XA I,~A(1) [ #A> = -- Iu(XA) <2BI#A ) = - Sualu(XA). (10) 

The core elements now are: 

~=--I.(XA)+ F, XB<#If~B(1)I#>, (1l) 
BeA 

AA 

Bq:A 

/~21 ~ = ~ [<#I f (1)  + x~ T)~,(1) 1 ,~> + <# t f(1) + x~ P~(1) I ,~> 

CeA, B 

= � 8 9  ] (13) 

+ F~ xc<#1fc(1)l,~>. 
CeA, B 

The three-centre integrals <#AJ I~C(i) ] 2B) present some calculational problems, 
and are therefore approximated using the Ruedenberg approximation in the 
NDDO, MCZDO and Ruedenberg methods, or the Mulliken approximation 
in the CNDO or Mulliken methods. 

Then respectively either 

In ] <#AIITc(1)[2B>=�89 ~ S.a~@llPc(1)lv>+ ~, Suo<o-[17c(1)[2) (14) 

or  

<~I !2dI)I ~> = z~_ [VAA + V~]  (15) 

where Vc gg and V~ B are the average nuclear attraction integrals required for 
rotational invariance of the Mulliken approximation. 

The other integrals <#gf l#g(1)f2B) and (#g] V~3(1)I2B) may also be found in 
either of these ways, or may be theoretically evaluated. If the Mulliken approxi- 
mation is used, a particularly simple expression for fluA~ 3 suitable for the Mulliken 
or CNDO methods, results: 

AB [ S~_(XAV2A~_XAVBB.1I_XBVBB~_XBVBAA)I  flu~ = �89 - Sufl .  - SuzIx + 

+ ~ -  F~ BB 
[ X c V  ~ AA _~ X c V ~  ] 

CCA, B 

= s.~ I_i~ + E x . v ~ - I ~ +  E x~v$ ~ (16) 
2 [ DCA Er 

+ 2~.XXA r A -- 
d 

S ~ _  1 AA = [o~u.~-(Xv-.~-~[{XA(V 2 - v B B ) + X B ( V  BB - -  vBAA)} 1 

with 
~u = - Iu + Z Xn VAA (17) 

Bg:A 
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and 
= 0 .  ( i s )  

The strong influence of the core charges on the magnitude of the core elements 
is illustrated in these equations. 

4.2. L6wdin Basis Core Hamiltonian 

In previous work (Pariser and Parr [15], Fischer-Hjalmars [16], Ohno [17]), 
the expression suggested for )./~AB in a L6wdin basis is: P~2 

~,RAB S#3. 
~'~a = fl.~ - - ~ -  (% + ct~). (19) 

From the S-expansion technique (Part I) it can be seen that this corresponds to 
the assumption that terms f l . zS .z  may be neglected to the first order in overlap. 
If this is the case, core elements suitable for the CNDO method may be calculated 
directly in a L6wdin basis as follows (from Eq. (40)-(42) of Part I): 

zc~. = % + O($2), (20) 

zfl~g = 0,  (21) 

at~aB _ S,a [XA(V2 g _ V~") +Xu(V~  B - V~A)] + O(S 2) (22) 

using also Eq. (16) and (21). 
Thus we obtain simple expressions, particularly easy to use in practice. 

However comparative calculations on the sulphate anion described in Part III 
show that the approximations made here are too drastic for quantitative results, 
although the qualitative interpretations placed on these results are in agreement 
with more accurate methods.The reason is that the terms in flS neglected here are 
substantial owing to the high core charges, and therefore ~ctv as obtained here is 
too large in magnitude while *t~aB ~'ua is smaller than a theoretical flA~ transformed 
to the L6wdin basis in Sect. 4.1. A more accurate alternative is provided by 
Eq. (47)-(49) of Part I. 

4.3. Semi-Empirical Core Hamiltonian 

In the sense that empirical valence state ionization potentials are used in %, 
methods (1) and (2) are already semi-empirical. The semi-empirical core Hamil- 
tonian, however, allows the resonance integral AB fl,~ to be obtained in an empirical 
way, by making it proportional to the amount of overlap of the orbitals X, and Xx, 
and to the core charges on atoms A and B. 

(XA + XB) (23) 
flA~ = _ KABS,z  2 

KAB being a constant of proportionality dependent only on the atoms A and B 
and not upon the particular orbitals involved, a condition necessary for rotational 
invariance [4]. At this stage the spectroscopically determined fl vs. R expression 
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for benzene [18] may be used to find KAB : 

Iflcc(RAs)I 
KAB - -  (24) 

]Scc(RAB)] 

the values for the carbon-carbon quantities ficc and Scc being found at the 
distance RAB, and the core charges Xc being + 1. 

Calculations using this semi-empirical resonance integral, when compared 
with those using the theoretical method (Sect. 4.1), give the interesting result 
that those resonance integrals involving p-orbitals are of roughly the same value 
in the two cases, while those involving s-orbitals are quite different, the semi- 
empirical values being lower, flcc and Scc, having been evaluated for carbon 
2p-orbitals, apparently can only be used to standardize for p-orbitals of other 
atoms. Some justification for the form of equation (25), including the dependence 
on the core charges, follows from a consideration of approximations for nuclear 
attraction integrals presented below. It should be noted that Ruedenberg [19] 
suggests that rather than equation (23), a proportionality to S ( 1 -  S) may be 
more appropriate. 

4.4. Approximate Nuclear Attraction Integrals 

Approximate means for the calculation of nuclear attraction integrals have 
also been examined, and may be suitable for simplifying even further the CNDO 
and Mulliken methods. Following the Pariser-Parr approach of ~-electron 
theory [l 5], these integrals may be expressed as a sum of neutral atom and electron 
repulsion integral parts: 

XB I~B ( 1 )  = l ? B o  ( 1 )  _ ZB, v., .... n a Ira(l) -- �89163 (25) 
2 

where 19Bo(1 ) is the operator for the interaction of electron 1 with neutral atom B, 
and the sum is over all of the valence electrons on B, with nz the occupation 
number of Zx in the neutral atom. Then, 

XB<~AI f'B(1) I m~> = <~AI TTBo [~A> -- Y~s n~ [(mt144)-- �89 

(26) 
= - Z B n Cu l 4) 

2 

since (#4]4#) is neglected in the ZDO approximation. In re-electron theory the 
so-called neutral atom penetration integrals <#A] ITBo [#A} are small (usually less 
than 1 eV) and are often neglected. Such an assumption gives a simple CNDO 
formula: 

XB VBAA = _ 2 B ,  val . . . .  n~ ~AB 

(27) 
= - -  X B ]lAB. 

That is 
vAA = - -  ~AB = VA BB. (28) 

Calculated values of neutral atom penetration integrals, however, range up to 4 eV 
in the sulphur-oxygen case, and so this approximation is a poor one when high 
core charges are present. Its effect on results obtained is discussed in Part III. 
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When the point charge approximation of Pople [20] is applied, the very 
simple result: 

14.4 
VA Bu = vAA = -- TAB = -- - -  eV (29) 

RAB 

with RAB in /k, follows. Taking another approximation of this nature, that of 
Ohno [17]: 

XA<#A[ VA[2B) = -- 2S~,aXA 14.4 (30) 
RAB 

in which it is assumed that the charge distribution ~(1)Z~(1) may be represented 
by a point at the midpoint of the bond, (RAB)/2, the "Ohno /3" [17] is derived 
from Eq. (19): 

~',~ (X A + XB ) 2 x 14.4 
NAB 

Now from Eq. (29) for TAB : 

Zt~AB _ Suz (XA + X~) 14.4 (32) 
~'ux 2 RAB ' 

giving a resonance integral formula suitable for use in the Extended Htickel 
method (to be discussed in a separate publication) and in a simplified CNDO 
method, the "CNDO R-method" to be set out in Sect. 8 of this paper. The 
dependence on S,~ and �89 + XB) provides justification for the semi-empirical 
resonance integral of Eq. (25). 

Calculations using the Ohno beta itself, Eq. (31), give values for spectral 
transition energies that are too high, showing that the magnitude of the beta 
value is too great. This conclusion is borne out by a comparison with the trans- 
formed theoretical resonance integrals of Sect. 5.1. Hence we are in agreement 
with Ohno [17] and Pilar [21] who conclude that scaling of the Ohno beta is 
necessary, although there is no evidence from this work that the scaling factor 
is constant at 0.85 as these two authors have suggested. 

The arguments of this section apply to the case where not all of the valence 
electrons on a particular atom are included in the calculation, if the core Hamil- 
tonian elements, Eq. (6), are replaced by: 

H. ~-- <#1~(1)Iv> + ~ { XA<#115A(1)Iv> 
(33) 

_~_ EA, valence not included na[(]Ay[O.O. ) _ � 8 9  (]jO_IO.V)]t 
o . )  

the second sum being over those valence electrons not included in the calcula- 
tions. Then nuclear attraction integrals of the general type XB(#AI 17"BI VA> are 
replaced in the formulae for c~ and fl by: 

XB<]~ A I I~BI VA) -t- ~B, v,1 . . . . . .  t included n~(~v 122) (34) 
2 

The development of reliable methods for calculating the resonance integral 
has been a major concern of this work. Other formulae have been examined 
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and found wanting from either the point of view of generality or from the point 
of view of lack of a theoretical basis. Thus the Pople-Santry-Segal formula [4], 
in which the resonance integral constant KAB or Eq. (23) is calibrated against 
ab initio work, is not applicable to second row elements or transition metals, 
where ab initio calculations are in short supply. Similarly the Fischer-Hjalmars 
formula [16] falls down when experimental spectroscopic data are unavailable. 
On the other hand, the Wolfsberg-Helmholtz expression [22], 

flux = K ~4_ (:~u + ex) (35) 

and variations of this, do not have the correct behaviour With respect to a change 
in the origin of the energy scale unless K is unity [23], while satisfactory results 
are obtained in most cases only when values of K greater than unity are employed. 
A comparison of Eq. (35) with the theoretically derived 11 of Eq. (16) shows that 
important terms are missing from this Wolfsberg-Helmholtz//. Similar arguments 
on theoretical grounds apply to expressions used by Dewar and Klopman [24], 
to the variation of ] /as the inverse sixth power of the bond length [25], and to 
the variation of/~ with bond order [26]. 

Evidence is presented in Part lII to show that as well as being the most 
appropriate from a theoretical viewpoint, the full overlap calculation of core 
elements (Sect. 4.1) is able to give the best agreement with experimental electronic 
spectra of the methods considered. The calculation of the electronic spectrum 
appears as a most sensitive test of the values of these elements. 

5. Empirical and Approximate Electron Repulsion Integrals 

Another major issue for all-valence-electron calculations concerns the values 
to be used for electron repulsion integrals. Theoretical values calculated using 
Slater-type atomic orbitals are known from experience with n-electron calcula- 
tions to be too large in magnitude. A common practice has therefore been to 
use empirical data to obtain monocentric Coulomb repulsion integrals, while 
the corresponding two-centre integrals are often found by approximate means 
which relate them to the monocentric integrals. Can these methods be  extended 
to all-valence calculations? 

We consider first of all empirical estimates of one centre repulsion integrals. 
The most important formula here is that of Pariser [27], which follows a con- 
sideration of the energy difference A E of the reaction: 

C. + C. -~ C- + C § . (36) 

A E may on the one hand be identified with the repulsion between the two 
electrons in C=, and on the other with the difference between the ionization 
potential C. ~ C § and the electron affinity C. ~ C-. 

A E = (g# I ##)exp = I - A.  (37) 

This "experimental" repulsion integral ought now to be compared with the 
theoretical value for C-, as pointed out by Brown [28] and by Sinano~lu and 
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Orloff [-29]. If STO's are used to find the theoretical value, then the discrepancy 
between the two is mainly due to the use of STO's rather than true Hartree-Fock 
atomic orbitals, and secondly to electron correlation (Fischer-Hjalmars [-16], 
Sinano~lu and Orloff [29]). Thus ~/IL##)e~p contains Hartree-Fock and electron 
correlation corrections, the work of Ref. [-16] and [29] providing the theoretical 
justification for its use (see however Part IV). 

There are three possibilities for the use of the Pariser ( I - A )  formula in 
obtaining monocentric repulsion integrals: 

i) Empirical monocentric repulsion integrals, found by using the ( I - A )  
formula for the Coulomb repulsion integrals; empirical Slater-Condon para- 
meters for the exchange repulsion integrals. 

ii) Semi-empirical monocentric repulsion integrals, in which Coulomb re- 
pulsion integrals are found as in (i), but used with theoretical values of exchange 
repulsion integrals. 

iii) Monocentric repulsion integrals, obtained by using the ( I -  A) formula 
in conjunction with theoretical integral values - to obtain a scaling factor which 
is then applied to the theoretical values of all monocentric repulsion integrals. 

All monocentric repulsion integrals may be expressed theoretically as linear 
combinations of the Slater-Condon parameters F and G [30], numerical values 
of which can be calculated from observed atomic spectra [31, 32]. Fischer- 
Hjalmars [16] has therefore suggested combining these theoretical expressions 
with the experimental data to give empirical repulsion integrals. Difficulties arise 
with Coulomb repulsion integrals because of complications in obtaining the 
Slater-Condon parameters F o needed for their evaluation [31, 32]. However, 
the parameters needed for exchange repulsion integrals have been tabulated by 
Hinze and Jaff6 [-31] for many atoms, and the theoretical expressions for all 
monocentric integrals in terms of these parameters and for real orbitals are given 
in the Appendix. 

The semi-empirical evaluation of repulsion integrals, (ii), has not been used 
in practice in this work, but the idea that theoretical values of exchange repulsion 
integrals need no correction receives support in the discussion of Hartree-Fock 
integrals and electron correlation in Sect. 7 and in a later paper of the series. 

When the approach, (iii), is used, certain questions become important. In 
particular, is the ratio of empirical to theoretical Coulomb repulsion integrals 
constant for different orbitals on the same atom, and for different atoms in the 
same row of the Periodic Table? Tables 1 to 4 show that this is the case when 
Burns's orbital exponents [--333 are used in the theoretical calculation of the 
integrals, rather than exponents calculated by the simple Slater rules [34]. Burns's 
rules for orbital exponents have been derived by a comparison of Slater-type 
orbital wave functions with Hartree-Fock wave functions, and differ from Slater's 
rules in distinguishing between s- and p-orbitals in the same quantum shell, in 
using only integral n-quantum numbers, and in allowing for the screening effect 
of electrons in orbitals outside the one being considered. The important difference 
for this work is thus, for orbitals of the same quantum shell and ~ the orbital 
exponent: 

Slater rules: ~s = ~p, 
Burns rules: ~s > ~p in general. 
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Table 1. Coulomb repulsion integrals for first row elements. - Empirical and theoretical values ('eV) 

Element Empirical Theoretical Burns Theoretical Slater 

?ss ~ pp ?ss 7 vp ?~,s Y pp 

Li 4.57 2.98 3.95 3.46 4.70 5.06 
Be - -  5.35 7.17 6.92 7.91 8.52 
B 9.21 8.10 10.38 9.59 11.12 11.98 
C 11.10 10.93 13.59 13.05 14.33 15.44 
N 12.87 13.10 16.80 15.71 17.55 18.90 
O 17.63 15.27 20.02 19.17 20.76 22.36 
F 13.87 17.36 23.23 22.63 23.97 25.83 

Table 2. Coulomb repulsion integrals for second row elements. - Empirical and theoretical values (eV) 

Element Empirical Theoretical Burns Theoretical Slater 

Na 4.67 2.95 5.38 3.17 4.33 4.70 
Mg 6.15 4.46 6.91 4.44 5.85 6.35 
A1 7.35 5.10 8.43 6.09 7.38 8.00 
Si 10.37 6.37 9.95 7.74 8.90 9.65 
P 11.72 9.31 11.47 9.01 10.42 11.30 
S 8.54 10.01 12.99 10.66 11.94 12.95 
C1 9.57 11.30 14.52 12.31 13.46 14.60 

Table 3. Empirical Coulomb repulsion integrals for charged species: sulphur and chlorine (eV) 

Species Sulphur integral Chlorine integral 

Y~ 7pp 7ss ~pp 

A 2+ 13.17 11.02 14.76 
A 3+ 14.42 13.69 13.09 12.38 
A 4+ 15.05 24.67 16.43 15.48 
A s + 16.74 16.70 

In Tables 1 and 2 empirical values of Coulomb repulsion integrals determined 
from the ( I - A )  formula and using the neutral atom valence state ionization 
potentials and electron affinities of Hinze and Jaff~ [35] are compared with the 
corresponding theoretical integrals calculated for the negative ion with both 
Slater and Burns exponents. 

An important difference emerges from the theoretical results: 
Slater Yss < 7pp, 
Burns ?s~ > ~pp, 

relationships which would lead to different s- and p-orbital occupation numbers 
in actual calculations. Allowing for experimental error in the electron affinities, 
the Burns result is paralleled by the empirical integrals. In order to test this 
conclusion in the case of sulphur and chlorine, where the tendency is not observed, 
empirical integrals have been evaluated for charged species of these elements 
from the ionization potential data of Moore's tables [-36] and the valence state 
formulae of Moffitt [37]. Table 3 lists the results obtained, showing that the 
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Fig. 1. Comparison of empirically evaluated ( I -  A) one-centre coulomb-repulsion integrals-with 
values obtained by direct integration using Slater orbitals and exponents given by Burns's rules 

Burns exponents tendency is maintained except in the case of S 4+ and pointing 
to a possible error in the neutral atom empirical data for sulphur and chlorine 
in Table 2. 

When the neutral atom empirical data are plotted against the theoretical 
Burns integrals, a linear graph is obtained, Fig. 1, again allowing for the dis- 
crepancies in the cases of F, S and C1. Hence there is support for the argument 
of using the relation: 

7 F = k , / r  (38) 

where 7 ~ and 7 r are the appropriate empirical and theoretical Coulomb repulsion 
integrals while k is a constant, the scaling factor, independent of the particular 
atom along any row of the Periodic Table. Further, Fig. 1 together with Table 4 
shows that when Burns exponents are used, it is reasonable to make k independent 
of the particular orbital, s or p, concerned, although this is not the case for Slater 
exponent integrals. 

The scaling factors listed in Table 4 are averages of the ratio of the empirical 
to theoretical repulsion integrals taken over first row (72s and 72p) and second 
row (73s and 73p) elements respectively. There is excellent agreement between 
the separate s- and p-orbital average scaling factors in each case when Burns 
exponents are used to calculate theoretical integrals. The scaling factor is inde- 
pendent of orbital type for orbitals having the same quantum number. For 
Slater exponents this agreement is not reached, and a separate scaling factor 
for s- and p-orbitals in the one quantum shell is required. 

Therefore, if 7,~ is the value of a particular monocentric Coulomb repulsion 
integral to be used in a calculation while 7, r is its theoretical value calculated 
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Table 4. Average neutral atom repulsion integral scalin 9 factors for first and second row atoms 

Integral Scaling factor Overall average Scaling factor Overall average 
Slater integrals Slater factor Burns integrals Burns factor 

?is(H) 1.16 1.16 1.26 1.26 
"~2s 0.753~ 0.790~ 
72p 0.677J 0.715 0.794J 0.792 
73~ 1.082~ 0.939~ 
73p 0.758J 0.920 0.945 J 0.942 

using Burns's exponents, we have: 

where 
7,~ = kTu r (39) 

k a = 0.792 for a first row atom A, 

k A = 0.942 for a second row atom A. 

The question of the scaling of monocentric exchange integrals is left for the 
moment. 

Many approximate methods for two centre Coulomb repulsion integrals have 
been formulated. Nishimoto and Mataga [38] and Roos [29] base their formulae 
on the conditions: 

(#AktAIJ~BJLB) = 0 at RAB = oo, (40) 

(#A/~A 12~2B) = �89 [(#kt I/q0 + (22 122)] at RAB = 0. 

Because it is difficult to apply these and other methods such as the point charge 
method of Pople [203, the uniformly charged sphere model of Parr [40], the 
multipole formulation of Parr [41], and the fourth-degree polynomial in RAB of 
Fischer-Hjalmars [_16] to the other two centre integrals required, (#AVAI2BaB), 
direct theoretical evaluation has been adopted in this work. 

Nevertheless, as the case of benzene has illustrated [42], these two-centre 
integrals, too, will be overestimated by theoretical means. Brown and Peel [43] 
have developed a means of scaling these integrals based upon the condition (40) 
for the scaling factors, and with the added condition that the shape of the theoreti- 
cal repulsion integral versus bond length curve is maintained after scaling. The 
formula: 

AB 1 - kR 2 d 7u~ = ~(A 7u~ + A 7~) e (41) 

where AT=TT--7 and k is a constant (k=0.5702A -2) evaluated so that the 
expression fits the corresponding A7 values for the theoretical and spectro- 
scopically determined repulsion integrals for benzene quoted in Ref. [42]. The 
formula (41) has been used in this work for Zu and Zx the valence s-orbitals on 
the corresponding atoms and the scaling factor 

/ ABxT ~ AI3 
/gAB= [~ss ) --Zi~ss 

AB'T (42) 
7ss ) 

has been used to scale other two-centre repulsion integrals. 
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Let us now turn to the possibilities for a completely theoretical treatment 
of electron repulsion integrals, examining the influence of the choice of basis 
atomic orbitals on their evaluation, and asking whether a correction scheme may 
be devised which corrects for the deviation of any chosen set from the basis of 
true Hartree-Fock atomic orbitals. 

6. Approximate Methods and the Hartree-Fock Solution 

Part of the correction necessary to theoretical values of electron repulsion 
integrals in past work has been attributed by some authors [16, 29] to the 
deviation of the Slater type atomic orbitals used from true Hartree-Fock atomic 
orbitals. In particular, Orloff and Sinano~lu [291 have shown that much better 
agreement is obtained between the theoretical and empirical ( I -  A) Coulomb 
repulsion integral for carbon p~z-orbitals simply by calculating the former with 
Hartree-Fock atomic orbitals. Their investigation opens the possibility of giving 
a theoretical basis to the repulsion integral corrections already discussed in the 
previous section. 

The advantage of Slater-type atomic orbitals are the comparative ease of 
computation of theoretical integrals, savings in computer time and space, and 
the use of the VESCF method by means of the simple dependence of STO integrals 
on effective nuclear charge Z,  (see next section). Improvements to STO's are 
possible in the choice of orbital exponent and in the scaling of theoretical integrals 
calculated with the chosen exponents. 

Inadequacies in the simple Slater rules [30] for the calculation of orbital 
exponents have been suspected for some time. A number of other ways for 
calculating exponents are now available [33, 44-47]. If our concern is with 
obtaining approximate Hartree-Fock values for integrals, the set of rules, already 
discussed, devised by Burns [331 by comparison of STO and Hartree-Fock 
moment integrals appears to be most promising. The rules of Clementi and 
Raimondi [46, 47], determined for atomic energy minimization arc similarly 
promising, although more complex, and differ from the Slater's rules in a similar 
way to the Burn's rules (see Sect. 5). 

Again when theoretical monocentric Coulomb repulsion integrals for s- and 
p-orbitals calculated using Slater's and Burns's rules are compared with Hartree- 
Fock values in Table 5, the tendency discussed in Sect. 6 is observed. The ~ss 
are greater than the 7,, in the Hartree-Fock and Burns cases, while the reverse 
relationship occurs for Slater exponents. 

In the case of manganese, where integrals have been calculated using the 
approximate Hartree-Fock atomic orbitals of Richardson, Nieuwport, Powell, 
and Edgell [48, 49], there is quite a large deviation of the Slater integral involving 
d-orbitals from the Burns and Hartree-Fock values. Later calculations, especially 
those in which the role of d-orbitals in molecules containing second row atoms 
is investigated, show that this is an important and general deficiency in Slater 
exponents themselves. Note, however the encouraging agreement between the 
Burns and Hartree-Fock values. 

The ratio HF/Burns values vary rather erratically, although not differing 
greatly from 1.0. The charge on the oxygen atom has a considerable influence, 
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Table 5. Comparison of theoretical monocentric repulsion integrals (eV) 

209 

Element Integral Stater Burns Hartree- Ratio 
exponents exponents Fock AO's" HF/Burns 

O -  1 7~s 20.7582 20.0169 21.0381 1.0510 
7pp 22.3653 19.1703 18.9100 0.9864 

O~ 7~s 22.4881 21.7467 21.7114 0.9984 
~p~ 21.6t76 18.7669 19.8061 1.0554 
~vv 24.2291 21.0341 22.0007 1.0460 

O + 1 o/~ 23.4766 22.6981 0.9668 
7pp 22.8979 24.9105 1.0879 

Mn ~ ~ 5.6404 7.9266 7.3025b 0.9213 
;Jpp 6.1403 5.3610 4.7028 b 0.8772 
~'d,~ 14.0451 22.0704 19.1419 b 0.8673 

a Hartree-Fock atomic orbitals of Clementi, Ref. [9]. 
b Approximate Hartree-Fock atomic orbitals of Richardson, Nieuwpoort, Powell and Edgell 

[48, 49] used, and integrals calculated by B. H. James. 

Table 6. Neutral atom Hartree-Fock correction factors for monocentric integrals 

Integral O S C1 Mn 

Nuclear attraction (/z A [ 17" n [ #A) 1.1503 1.1992 1.2024 1.0388 
Repulsion 7u~ A 0.9984 1.0350 1.0315 0.9197 

and so does the type of orbital. Closest agreement is attained for neutral oxygen. 
The results for manganese show close agreement between the p-orbital and d- 
orbital ratios. In order to check this trend, a further integral Yp/~ for neutral oxygen 
was calculated, and also the fourteen unique Coulomb repulsion integrals 
involving s-, p- and d-orbitals for manganese. The 7p~ ratio (1.055) for neutral 
oxygen was in agreement with the ypp ratio, while the other manganese integrals 
agreed with the ~pp and ~dd values listed in Table 5, giving an average ratio of 
0.885 + 0.02. 

Two courses of action seem open to us here. Either we may use different 
scaling factors for integrals involving s-orbitals, and for integrals involving p- and 
d-orbitals, or we may assume that little error is introduced by using an average 
scaling factor for each atom and each pair of atoms. The latter would only be 
possible if the atomic charges do not differ greatly from zero. First we investigate 
the extent of scaling required for the various types of integral involved in the 
calculations at various bond lengths, assuming neutral atoms. Table 6 contains 
some sample results. 

In most cases, the difference between the Hartree-Fock and Burns value is 
very small, especially for two-centre integrals. Except in the case of manganese, 
only monocentric and overlap integrals require scaling. Monocentric nuclear 
attraction integrals are about 20 % too low in value when Burns's exponents are 
used. This problem is avoided, however, when empirical valence state ionization 
potentials are used in actual calculations. The Hartree-Fock correction for 
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overlap integrals has a relatively large effect on calculated electronic spectra, 
because of the consequent change in the magnitude of the resonance integrals ft. 
Differences in oxygen-oxygen overlap integrals increase with increasing distance 
between the oxygen atoms. These differences are small in absolute terms (changing 
from a Burns value of 0.0164 to a Har t ree-Fock value of 0.0232 in the sulphate 
anion), but, as will be shown in a later paper, cause a marked alteration in calcu- 
lated transition energies. 

It seems therefore that the taking of an average scaling factor introduces 
little error and for a general integral I we may write: 

(Is HF : (/cAB) HF \.t# .~ {/-AB~B} . . . .  (43) 

where the average Har t ree-Fock correction factor (kAS) HF depends only on the 
type of integral I and the atoms A and B, but not upon the orbitals # and 2 
involved. (kAB) I~F appears to differ from unity only for one centre repulsion 
integrals and overlap integrals in most  cases, and then a suitable average value 
may be found by calculating k for the two integrals, Is~ and /pp. Hence when 
Burns's rules for orbital exponents are used the balance between s-, p- and d- 
orbitals on the one centre given by full Har t ree-Fock atomic orbitals is maintained. 
In addition theoretical integrals are closer to their Har t ree-Fock values, and may 
be scaled where necessary from the data of Tables 5 and 6. The postulate of an 
average correction factor for all integrals of the same type on the same atom or 
between the same pair of atoms applies, provided the atomic charge does not 
differ greatly from neutrality. With their simplicity as well, the advantages of 
Burns's rules are obvious, and with the Har t ree-Fock correction factors, they 
seem to make a reasonable allowance for the deviation of basis STO's from full 
Har t ree-Fock atomic orbitals. An alternative possibility presently under examina- 
tion is the use of Gaussian basis atomic orbitals. 

7. The VESCF Method and Intramolecular Environment 

The Variable Electronegativity Self Consistent Field (VESCF) procedure of 
Brown and Heffernan [2, 3] is particularly suitable for all valence electron 
calculations, because it allows the important  parameters  to vary as the number 
of electrons associated with each a tom in the molecule changes. That is, the effect 
of the intramolecular environment on the form of the basis atomic orbitals is 
taken into account, but a simple alternative is sought to the laborious procedure 
of optimizing orbital exponents by the variational technique 2. 

In principle all parameters  in the calculation are made dependent upon the 
effective nuclear charges Z~ for orbitals :g~ and a simple rule is adopted for 
calculating Z ,  : 

Z# : Z ~  n . . . .  (n  u _ 1 ) a u  u _ ~ A  n v a u  v (44) 

2 The basic procedure designated VE is to avoid the great labour of direct optimisation of atomic 
orbitals via the variation theorem by using empirical rules devised, for example, by studies of individual 
atoms and ions. For Slater type orbitals the exponent rules of Slater or Burns are regarded as crude 
indications and lead to approximate expressions such as (52) for the effect of the molecular environment 
on basic integrals. However, more elaborate calculations would justify the seeking of more elaborate 
and reliable empirical rules. 



MO Theory for Inorganic Molecules. lI 211 

where the orbital Zu is centred on atom A, Z~ nn~ is the effective nuclear charge of 
the nucleus and inner-shell electrons for an electron in orbital Zu, a,v are the 
shielding constants from Burns's or Slater's rules, being the amount by which an 
electron in orbital Zv shields the electron Zu from the nucleus, n~ are the occupation 
numbers given by 

n~ = P~, Lbwdin basis (45) 

n, = P~, + ~ ~B p, zSva, full overlap basis. (46) 
B:~A 2 

Because of the dependence of the n~ on the bond order matrix, new values 
of Z u are calculated within the SCF procedure as each new set of molecular 
orbital eigenvectors is produced. Then new values of the parameters are generated 
from the new values of Z~ for the next iteration. 

In practice the full VESCF procedure is too time-consuming for the more 
complex calculations and larger molecules required here. Fortunately only the 
monocentric integrals are greatly dependent on Z,  within the range of Z u values 
to be expected in a calculation. Consequently only these integrals are expressed 
as functions of the effective nuclear charges in the version of the VESCF method 
used in this work. Theoretically, the following relationships are obtained: 

<]/A [ T (1 )  I,ttA) = kT Z2 , (47) 

27.21 
(/~g ] I)A(1) I #a )  = ~ Z u (eV), (48) 

<[IA/AAIYA YA> = kcZla when Z u = Zv 
(49) 

=f((u,(~) otherwise, 

<]2AYAIYA/. /A>~kEZ/a  when Z u = Z  ~ 
(50) 

=q((u,(~) otherwise. 

Here n is the principal quantum number, the constants gr, kc and k~ and the 
functions f and q are available from Zauli's tables [12], and the orbital exponents 
(,, (~ are given by: 

~ _  z.  (51) 
n 

The other monocentric parameter is the valence-state ionization potential 
appearing in the Coulomb integral expression (11). In normal VESCF procedure 
this is obtained as a quadratic in Zu" 

/. = a z .  ~ + b z .  + c (52) 

where a, b and c are determined from atomic spectral data, and the formula is 
to be compared with the theoretical expression from Eqs. (8) and (47-50): 

I u = (#1T(1) + N a 15"a (1) q- 2 in . . . .  hells n~ (]~(1) - �89 ] #)  
v 

27.21 (53) 
= kT Z 2  Jr- NA ~ 2 -  Z,u -}- 2 i . . . . .  hells n, [fd(Zu ZO - �89 (Zu Z0] 

v 

providing some justification for the form of Eq. (52) since the n, and Z~ are 
constant under the inner shells-valence separability conditions. 
15 Theoret. ehim. Acta (Berl.) VoI. 16 
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The empirical constants a, b, and c are determined from atomic spectroscopic 
data for an isoelectronic series of ions including the reference ion A. In such 
cases an extra variable, the core charge, is introduced. If a direct proportionality 
of valence state ionization potential to core charge is assumed, then core charges 
may be equalized along the series via a scaling procedure: 

I~(XA) = ~ I~, (XB) (54) 

where I~(XA) is now the valence state ionization potential for atom B if B has the 
same core charge as the reference atom A. 

In all-valence-electron calculations, small deviations in Z ,  make large 
differences to Hamiltonian elements, even more so than in the n-electron-only 
calculations for which the VESCF method was originally designed. The reason 
is the high core charges involved in the core Hamiltonian, which cause small 
changes in the basic integrals to be magnified. Consequently the importance of 
using the VESCF method is increased. 

On the other hand the method is not without its disadvantages. The scaling 
procedure (5~) appears to need refinement and has led Julg [50] to develop a 
linear variation in Z u equation for the valence state ionization potential. Also if 
the Z u values vary outside a small range, two-centre integrals need to be adjusted, 
a problem easily resolved in, say, the CNDO method, but much more difficult 
in methods as complex as the N D D O  method. 

8. Special Consideration of the CNDO Method 

Only an average Coulomb repulsion integral and an average nuclear attraction 
integral is required for each atom A (TA, V~ A respectively) and pair of atoms A 
and B (7AB and V~ B) in the CNDO and Mulliken methods. Calculations show 
that the way in which these averages are found has a large effect on the final 
results. When theoretical values of integrals, based on Burns's values of orbital 
exponents, are considered, the original proposal of Pople, Santry, and Segal, that 
integrals involving the appropriate valence shell s-orbitals are suitable averages, 
is seen to be less satisfactory. Especially for the calculation of electronic spectra, 
it is better to use actual weighted averages (see Part III and the examples in 
Ref. [51-52]): 

: ( >  (55t 

where I represents a general integral for which an average is required, the sums 
are over the valence orbitals of the respective atoms included in the calculation, 
and n n and n B are the numbers of such orbitals. In the "theoretical CNDO method" 
all integrals I take their respective theoretical values and core elements in t h e  
full overlap basis are formed from Eq. (16), (17), and (18). The Hartree-Fock 
scaling procedure is invoked. 

There are numerous possibilities for "semi-empirical CNDO methods", 
mostly depending on the choice of repulsion integrals, since on both theoretical 
and practical grounds Eq. (16)-(18) represent the most reliable way of obtaining 



MO Theory for Inorganic Molecules. II 213 

the core Hamiltonian matrix. Thus the (I - A) formula supplies all the necessary 
one-centre Coulomb repulsion integrals. Two-centre Coulomb repulsion integrals 
may be related to the one-centre ones via the uniformly charged sphere approxi- 
mation [40], or the Nishimoto-Mataga formula [38], or the Roos formula [39]. 
The uniformly charged sphere approximation has the advantage of being a 
simple representation of the orthogonalized atomic orbitals which form the 
basis of the zero differential overlap methods. According to the arguments of 
Sect. 6, Hartree-Fock and electron correlation corrections to repulsion integrals 
are indirectly allowed for in any of the above ways. 

Finally a simple CNDO method, the "CNDO R-method", may be suggested 
as an alternative to Extended Hfickel methods. It has the advantage of being as 
simple to use as these methods, promising more reliable results of a semi-quanti- 
tative nature. Its name stems from the requisition of the dependence of two- 
centre integrals on the bond length R. In the point charge approximation with 
the neglect of neutral atom penetration integrals, Eq. (28) and (29), and using 
the reduced "Ohno fi" of equation (32), we have: 

14.4 
Fg u = - -  I. -1- (PAA - -  �89 7A + ~ (PBs -- XB) , (56) 

B r A RAB 

Fs = - k (XA + X0 14.4 _ _  �89  14.4 

RAB RAB 
(57) 

1 14.4 
= - [k(x  + x o  s , .  + F,v] .  

Here k (0.8-0.9) is a scaling factor for the resonance integral. The only unknowns 
are the one-centre repulsion integrals 7A. These are easily found from the (I - A) 
formula, or from the tables of Sichel and Whitehead [53] for first and second 
row atoms. The "CNDO R-method" is suggested merely as a simple, easy-to-use 
alternative to Extended Hfickel calculations. The information it can give would 
be little more than the information obtained in Extended Hfickel work. 

9 .  C o n c l u s i o n s  

In our attempt to devise parameter choice schemes of general applicability 
and having a sound theoretical basis, a number of important points have emerged: 

a) In zero differential overlap methods, the calculation of the full-overlap- 
basis core Hamiltonian matrix, followed by a transformation to the L6wdin 
basis for use with zero differential overlap repulsion integral approximations is 
a feasible course of action as well as having the soundest theoretical basis. 

b) A "theoretical parameter scheme" is possible and practicable in a basis 
of Slater-type atomic orbitals. The scheme then depends upon making adequate 
Hartree-Fock and electron correlation corrections. By using Burns's rules for 
orbital exponents together with an average Hartree-Fock scaling factor for those 
integrals that need further correction, the difference between STO's and Hartree- 
Fock AO's is minimized. In a following paper of the series it will be shown how 
electron correlation may be allowed for in this scheme. 

c) "Semi-empirical parameter schemes" are also possible, and depend on the 
use of the (I - A) formula and Slater-Condon parameters. Via the (I - A) formula, 
15" 
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an empirical scaling scheme for theoretical integrals may be developed for re- 
pulsion integrals. Presumably Hartree-Fock and electron correlation corrections 
are then adequately taken into account in an indirect way. 

d) The VESCF approach, as well as being able to cope with the high core 
charges of all valence electron calculations, allows for the effect of intra-molecular 
environment on the basis atomic orbitals. It may be used in conjunction with 
either "theoretical" or "semi-empirical" parameter schemes. 

e) Special features of the "theoretical" and "semi-empirical" CNDO methods 
have been discussed, and the simple " C N D O  R-method" suggested as an alter- 
native to Extended Hiickel methods for rapid calculations giving a limited amount  
of information. 

Appendix 

Theoretical  Expressions for  Monocentric  Repulsion Integrals in Terms of  

Slater-Condon Parameters 

The Slater-Condon parameters are defined and discussed in Ref. [12] and [30], 
and in textbooks on atomic spectroscopy. Any monocentric repulsion integral in 
principle may be calculated from these F and G parameters: 

Juv = ~ # l v v )  = ~ ak(l ", m~, 1 ~, mr) DkFk(n" 1", n" l~) , 
k 

K ~  = (pv [ v#) = 6(m•, m~) ~ bk(l ", mf, 1 ~, mr) Dk Gk(n" l", n ~ l~) . 
k 

The appropriate combinations of F and G parameters for integrals involving 
complex orbitals are easily found from the data in Ref. [30]. Here we list the 
corresponding expressions for real orbitals. The F and G parameters may be 
calculated theoretically or evaluated empirically from spectroscopic data, and 
in the latter case find most use for calculating monocentric exchange integrals. 

Slater-Condon Parameters Expressions for  Monocentric  Coulomb and Exchange 

Repulsion Integrals 

Orbitals Involved Coulomb Repulsion Int. Exchange Repulsion Int. 

# v 
S s F~o s 
s p F~ p G~ p 

IgP P _t_ d. 12"PP P P ~o - ~-2  - -  
p p F~ p - 2 F pp 3 F~ 'p 
s d F~ d G~ d 
p~ d~ F pd + 4 F p'~ 2 Gf d + 27 G~ a 
p~ d ~  F~ a + 2 F f  a 3 Gf a + 24 G~ d 
Px dz2 F ga - 2 F f  d Gf d + 18 G~ a 
p~ dx2-y~ F~ "~ - 4F~ a 15 G pd 
d d Fg a + 4 F~ d + 36 F ad - -  
dxy d ~ _  y~ Fa d + 4 F dd - 34F dd 35 F de 
dz: d~  F de + 2 F ~ a -  24 F dd F~e + 3O Fa4 d 
d ~  dy~ Fe e - 2 Fa2 a - 4 F de 3 F de + 20 F dd 
d~ d~y F g d - 4 F ~ a  q - 6F,~ a 4UEd + 1 5  F~ d 
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R e l a t i o n s h i p s  t h a t  h o l d  for  i n t eg ra l s  n o t  l i s ted  he re  a re :  
(a) I n v o l v i n g  p-  a n d  d -o rb i t a l s .  

(i) J(p~, dxz ) = J(Pz, dry) = J(Px, dx~) = J(Px, d~r) 
= J(Pr, dyz) = J(P~,,.dxy) = J(Px, d ~ - r 2 )  = J(Pr, dxz-yz) 

(ii) J(p~, dz~) = JPr, dz~) 
(iii) J(p~, d~2_r~) = J(Pz, dxr) = J(P~, dry) = J(Pr ,  d~ )  
(iv) S i m i l a r l y  for  the  e x c h a n g e  in t eg ra l s ,  K .  

(b) I n v o l v i n g  d - o r b i t a l s  only .  
(i) J(d~2, dx~ ) = J(dz~, dry) 

(ii) J(d~z, dr3 = J ( d ~ ,  dxy) = J(dxz, dx~-,~)= J(drz, d~,) = J(dr~, d~_,~) 
(iii) J(d~2, d~y) = J(d~2, d,2_y~) 
(iv) S i m i l a r l y  for  the  e x c h a n g e  i n t eg ra l s  K.  

T h e s e  f o r m u l a s  a re  usefu l :  
(i) in  de r iv ing  t h e o r e t i c a l  exp re s s ions  for  al l  of  the  i n t eg ra l s  in t e rms  of  the i r  

o rb i t a l  exponen t s .  O n l y  a l imi t ed  n u m b e r  of  F a n d  G p a r a m e t e r s  need  be  de r i ved  
t h e o r e t i c a l l y  to  o b t a i n  the  wide  r a n g e  of  r e p u l s i o n  in t eg ra l s  l i s ted  here ;  

(ii) in  o b t a i n i n g  e m p i r i c a l  e x c h a n g e  and ,  in s o m e  cases ,  C o u l o m b - r e p u l s i o n  
i n t eg ra l s ;  

(iii) in  d e r i v i n g  s i m p l e  r e l a t i o n s h i p s  b e t w e e n  the in t eg ra l s  i n v o l v i n g  dif ferent  
o rb i t a l s  of  the  s ame  set, w h i c h  can  t hen  ac t  as a test  of  va lues  of  i n t eg ra l s  be ing  
used,  e spec i a l l y  where  these  have  been  f o u n d  s emi - emp i r i c a l l y .  
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